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Lecture 06
Lecturer: Vasilis Syrgkanis Scribe: Vasilis Syrgkanis

In Lectures 3 and 4, we saw how existence of no-regret algorithms for online convex optimization problems
imply von-Neumann’s minimax theorem for zero-sum games. Furthermore, the average of strategies
obtained using no-regret algorithms help achieve ε− approximate Nash equilibria.

In this lecture, we will see how the players may arrive at equilibrium strategies, which are more
general than Nash equilibria.

1 Correlated Equilibrium

A key observation regarding Nash Equilibrium (NE) is that it restricts players to use independent
randomness. What if we could obtain an equilibrium using “shared randomness”?

Consider the game traditionally known as Battle of Sexes. The payoff matrix is as given below.

B
1/4 3/4

Opera Football

A
3/4 Opera 3, 1 0, 0
1/4 Football 0, 0 1,3

We can see that (O,O) and (F,F) constitute pure NE, with payoffs (3,1) and (1,3), respectively. A
mixed-strategy NE consists of player A (resp. B) choosing strategies O and F with probabilities 3

4 and
1
4 (resp. 1

4 and 3
4 ). The expected payoffs of players A and B in this mixed-strategy NE are 3

4 each. This
is fair to both the players but results in payoffs worse than both the pure-strategy NE.

Now, consider the following strategy. The players meet and flip a fair coin, and determine their
strategies based on the outcome of the coin toss. For example, if it’s heads, then both players play
(O,O), and if it’s tails, then both players play (F,F). Thus, the coin correlates the distribution of the
players’ strategies. The randomness of the fair coin is “shared” between the two players. In this case, the
expected payoff of each player is 2, which is also fair to both players. Notice that, if it’s heads then the
player A strategy is to play O, and given that A fixes its strategy, player B has no incentive to deviate
from strategy O. Similarly, given B will play O, player A has no incentive to deviate from strategy O.
Thus, this is also results in an equilibrium. The case of coin toss resulting in tails can be analogously
described.

Question: Why isn’t this a feasible outcome?

Let’s look at another game called junction game. Two players driving respective cars arrive at
an intersection along perpendicular directions. They will need to determine how to safely cross the
intersection, and who will pass first? The strategy set for each player consists of Pass and No Pass,
denoted by P and N. The payoff matrix is as given below.

B
1

101
100
101

P N

A
1

101 P -100,-100 1, 0
100
101 N 0, 1 0,0

If both players simultaneously pass, then they will get in an accident resulting in large negative payoff.
Both (P,NP) and (NP,P) are pure-strategy NE resulting in payoffs of (1,0) and (0,1). The strategy
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profile of mixed-strategy NE is given by
{(

1
101 ,

100
101

)
,
(
100
101 ,

1
101

)}
resulting in expected payoff of 0 for

each player. (Note that the payoff matrix is a symmetric matrix, and a symmetric payoff matrix in a
zero-sum game can only result in both players getting 0 expected payoff.) By adding traffic lights, we
create a signaling scheme and we can correlate the decisions of players.

This sufficiently motivates the main topic of discussion, namely the correlated equilibrium. The
concept of Correlated Equilibrium (CE) was introduced in [1]. The proposed process to arrive at CE is
as follows:

• Prior to the game a third party draws a vector of signals (σ1, · · · , σn) from some distribution, with
σi ∈ Ωi.

• Then, the third-party reports σi to each player.

• Each player’s correlated strategy is given by fi : Ωi → Si.

The resulting correlated strategy profile is a CE if

∀ i E [ui (f1(σ1), · · · , fn(σn)) |σi] ≥ E [ui (s′i, f−i(σ−i)) |σi] , (1)

i.e. each player i has no incentive to deviate from its correlated strategy fi(σi) given the third-
party reports σi, provided the rest of the players keep their strategies fixed. (Note that each player
i does not observe the signal σj reported to player j by the third-party, but only knows the joint
distribution of signals. For example, in the case of junction game, if you see a red signal, all you
need to do is to stop. You don’t need to observe what signals other cars are seeing, or how they
plan to respond to it, but you know that if you got a red signal then your opponent got a green
one and vice versa. This is possible due to the “trust” in the trusted third-party which happens
to be traffic-law enforcement agencies.)

It turns out that without loss of generality the signals that the third-party uses to report to players
might as well be the strategies which the third-party wants the players to play, i.e. ∀ i : Ωi = Si, and
the correlated strategy of player i can be si, given that the third-party recommends player i to play
strategy si, i.e. fi(si) = si. Thus, the third-party draws (s1, · · · , sn) ∈ S1× · · · ×Sn from a distribution
D and reports si to player i for all i. In this case, the correlated equilibria will satisfy:

Es∼D [ui(si, s−i)|si] ≥ Es∼D [ui(s
′
i, s−i)|si] .

Proof. Consider any other signal space Ωi distributed over Ω1×, · · · ,×Ωn and strategy fi. We can
simulate this with a simplified correlated equilibrium i.e.

- Draw σ ∼ D

- Compute s = (f1(σ1), · · · , fn(σn))

- Recommend si to each i.

Since before you wanted to play si = f(σi) when seeing σi, you still want to follows si when recommended
si. More formally, by the tower law of expecations:

E [ui (s)− ui (s′i, s−i) |si] = E [E [ui (s)− ui (s′i, s−i) | σ, si] |si]
= E [E [ui (f1(σ1), · · · , fn(σn))− ui (s′i, f−i(σ−i)) | σ, si] |si]
= E [E [ui (f1(σ1), · · · , fn(σn))− ui (s′i, f−i(σ−i)) | σ] |si]
= E [E [ui (f1(σ1), · · · , fn(σn))− ui (s′i, f−i(σ−i)) | σi] |si] ≥ 0

where the last inequality holds by the fact that D is a correlated equilibrium. �
For example, in the junction game, instead of the traffic signal showing red or green, it will display

Pass or No Pass.
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Definition 1. A Correlated Equilibrium (CE) is a distribution D over strategy profiles s := (s1, · · · , sn) ∈
S := (S1 × · · · × Sn) such that:

Es∼D [ui(si, s−i)|si] ≥ Es∼D [ui(s
′
i, s−i)|si] . (2)

That is, a CE is a distribution over set of strategy profiles S such that after a strategy s is drawn,
playing si is a best response strategy for player i conditioned on seeing si, given that everyone else will
also follow their recommended strategy. For example, if strategy profile {Pass, No Pass} is drawn, then
given that player 1 sees Pass, it knows that player 2 sees No Pass, and therefore player 1’s best response
is to Pass.

Computability of CE. Let us now argue that finding a correlated equilibrium in a general normal
form game with finitely many strategies is as easy as solving a linear program. Hence, unlike Nash
equilibria which are solutions to fixed-point problems, correlated equilibria are computationally tractable.
First let us write more explicitly the correlated equilbrium condition presented in Equation (2), when
strategies are finite: in this case a distribution over strategy profiles, with probability density function
π : S1 × · · · × Sn → [0, 1], with

∑
s π(s) = 1, is a correlated equilibrium if

∀ s?i , s′i ∈ Si :
∑

s:si=s?i

π(s)

Pr(s?i )
(ui(s

?
i , s−i)− ui(s′i, s−i)) ≥ 0 (3)

where we used the fact that Pr[s−i|s∗i ] = Pr[s]
Pr[s∗i ]

. Since, Pr(s?i ) is a constant in the latter inequality, we

can multiply by Pr[s?i ] and get an equivalent formulation:

∀ s?i , s′i ∈ Si :
∑

s:si=s?i

π(s) (ui(s
?
i , s−i)− ui(s′i, s−i)) ≥ 0 (4)

The last set of inequalities is a system of linear constraints on the variables π(s). Thus we can find a
correlated equilibrium by solving a linear program where the variables are π(s) for each s ∈ S1×· · ·×Sn
and where the constrains are defined by Equation (4) and determine feasibility of the LP. In fact we can
also maximize or minimize any objective that is a linear function of this variables and hence compute a
correlated equilibrium that maximizes some expected objective,

∑
s π(s) f(s) = Es∼D[f(s)].

Observe though that the number of variables in the linear program grows exponentially with the
number of players. This is necessary for general games, since the description of the game is also ex-
ponential in the number of players. However, in many settings the game is given implicitly and the
description of the game is not exponential in the number of players. One important question is whether
we can still find a correlated equilibrium efficiently. A general solution to this problem was given in [3],
but this is outside the scope of this lecture.

Existence of CE. Observe that every Nash equilibrium is also a correlated equilibrium. Nash equilib-
ria are exactly the subset of correlated equilibria that satisfy that the joint distribution D over strategy
profiles is a product distribution, i.e. if π : S1×· · ·×Sn → [0, 1] is the density of D, then π(s) =

∏
i ρi(si),

where ρi(si) is a marginal distribution over the strategy of player i (it is the extra product constraint
that renders Nash equilibria intractable). Since a Nash equilibrium always exists in a game, a correlated
equilibrium also always exists, i.e. the LP described by Equation (4) is always feasible. This existence
argument goes through the Nash equilibrium existence proof, which is a heavy hammer as it is based on
fixed-point theorems. An elementary proof that directly argues feasibility of the LP is provided in [2].

2 Correlated Equilibria and No-Swap Regret

We will now turn to constructing learning dynamics (i.e. decoupled algorithms that each player can use
independently) such that the process converges to a correlated equilibrium. Hence, we see that unlike
Nash equilibria, correlated equilibria have all the nice properties that we might wish for.
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Similar to how we solved two-player zero-sum games via no-regret learning, we will consider the game
played repeatedly. On each day t ∈ {1, . . . , T}:

• Each player picks sti from some learning algorithm (i.e. an algorithm that observes the past and
decides what to play next).

• Receives a payoff ui (st1, · · · , stn) = ui(s
t)

• Observes utility he would have received had he played any possible actions: rti =
(
ui(si, s

t
−i)
)
si∈Si

We will consider the case where the learning algorithm that each player uses is a no-regret learning
algorithm, i.e.:

∀ i 1

T

T∑
t=1

ui(s
t) ≥ 1

T

T∑
t=1

ui(s
′
i, s

t
−i)− ε(T ) (5)

with lim
T→∞

ε(T ) → 0. In two player zero-sum games, we showed that the pair of marginal empirical

distributions of each player’s strategy, i.e. ρi(si) =
|{t:sti=si}|

T converges to a Nash equilibrium. What
can we say in general games?

Let DT be the empirical distribution over strategy profiles: i.e. a sample from DT is a uniform draw

from {s1, · · · , st}. Equivalently, the density function associated with DT is simply: πT (s) = |{t:st=s}|
T .

Then, we can re-write the no-regret condition as:

Es∼DT [ui(s)] ≥ Es∼DT [ui(s
′
i, s−i)]− ε(T ) (6)

In the limit, it converges to a set of distributions such that for each D in the set

Es∼D [ui(s)] ≥ Es∼D [ui(s
′
i, s−i)] (7)

However, this still does not imply that D is a correlated equilibrium as we don’t have the conditioning on
si part in the above constraints! As a side-note the a distribution over strategy profiles that satisfies the
above unconditional set of constraints is called a coarse-CE and we’ll get back to that when analyzing
the price of anarchy in games.

However, our goal is to create dynamics that converge to CE. To achieve that we will need to change
the no-regret conditions that each player’s learning strategy satisfies. Currently we only require that
the player does not regret a fixed strategy in hindsight. To converge to a correlated equilibrium we will
need a condition of the form: on the time-steps where I was playing action i I don’t want to switch to
action j (for any pair (i, j)).

Definition 2 (No-Swap Regret). A swap σ : [k]→ [k], is a mapping from actions to actions. An online
learning algorithm satisfies no-swap regret if:

∀ σ E

[
T∑
t=1

ltit −
T∑
t=1

ltσ(i)

]
= o(T )

Equivalently, if we let pt denote the probability vector over actions, chosen by the algorithm, then we
want:

∀ σ
T∑
t=1

〈pt, lt〉 −
T∑
t=1

∑
i

pti l
t
σ(i) = o(T ) (8)

It is easy to see that if every player uses a no-swap regret algorithm, then the empirical distribution
DT converges to a distribution D that belongs to the set of correlated equilibria. Equivalently, for any
T , the empirical distribution is an o(T )-approximate correlated equilibrium. Thus the main question
that remains open is whether no-swap regret algorithms exist.
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3 A Black-Box Reduction: From No-Regret to No-Swap-Regret

Given a no-regret algorithm with regret r(T ) we will create a no-swap regret algorithm in a black box
manner as follows:

• We will create a separate algorithm for each action j, denoted as Aj . Each Aj is an instance of
the no-regret algorithm.

• Intuitively: Aj will be running on iterations where we pick action j and will make sure on those
subset of iterations we have no-regret for any other action.

• Every day we pick some algorithm j at random with qj probability (for some q to be determined
later). If algorithm Aj is chosen we then follow its recommendation.

• Say algorithm j, picks i with probability pji. Then the probability that the master algorithm picks

action i is: zi =
∑k
j=1 qjpji = Prob[of playing action i by master]

• Advance the state of Aj if action j is chosen and 0 otherwise.
More easily: for each algorithm Aj send loss feedback ztj`t.

Problem: We intended to advance algorithm i, but after the fact we want to advance the algorithm
associated with the action we picked. (cyclic reference: some fixed point lurking).

From no-regret property of each Alg Ai against the fixed action σ(i):∑
t

〈pti, zti lt〉 − zti ltσ(i) =
∑
t

zti〈pti, lt〉 − zti ltσ(i) = o(T )

Summing over all algorithms we have:∑
t

zti〈pti, lt〉 −
∑
t

∑
i

zti l
t
σ(i)︸ ︷︷ ︸

right-
comparator

= k · o(T )

But our loss is
∑
i q
t
i〈pti, lt〉 not

∑
i z
t
i〈pti, lt〉. The two are the same if zti = qti . Then in expectation we

use algorithm Ai as many times as we play action i.
So we need:

qi︸ ︷︷ ︸
prob of pick-
ing algorithm
Ai

= zi =
∑
j

qjpji︸ ︷︷ ︸
prob of picking
Alg and then Alg
picks action i

(q1, · · · , qk) = (q1, · · · , qk)


−− p1 −−
−− p1 −−

...
−− pk −−

︸ ︷︷ ︸
stochastic matrix

Essentially pji =Pr(from state j → state i) in a Markov chain with k states and q is a stationary
distribution of this chain! Such a stationary distribution always exists. So given the current probabilities
of each algorithm, we will construct this markov chain and find its stationary distribution q, then we
will choose algorithm Ai with probability qi. The resulting algorithm then satisfies the no-swap regret
condition.

06-5



References

[1] Robert J. Aumann. Subjectivity and correlation in randomized strategies. Journal of Mathematical
Economics, 1(1):67 – 96, 1974.

[2] Sergiu Hart and David Schmeidler. Existence of correlated equilibria. Mathematics of Operations
Research, 14(1):18–25, 1989.

[3] Christos H. Papadimitriou and Tim Roughgarden. Computing correlated equilibria in multi-player
games. J. ACM, 55(3):14:1–14:29, August 2008.

06-6


