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1 Refresher

Last lecture we learned about mechanism design, in which we identify a desired outcome, then create a
mechanism to achieve this outcome. We looked at games of incomplete information and some different
types of equilibria that can occur in these games (e.g. dominant strategy, ex-post Nash, Bayesian
Nash equilibria). We examined first-price and second-price (or Vickrey) auctions, and concluded that
second-price auctions are optimal for maximizing social welfare.

Finally, we looked at the implementation of mechanisms. We saw what it meant for a function f
to be implemented in dominant strategies of a mechanism. We also distinguished direct versus indirect
mechanisms, and saw that truthful, direct mechanisms are very powerful when it comes to implementing
functions in dominant strategies (we called this the Revelation Principle).

2 Single-Dimensional Environments

In a single-dimensional environment, we have n bidders. Each bidder i has a private value vi (a scalar),
which is her value for “being served.” Finally, we have a feasible set X, where each element of X is an
n-dimensional 0/1 vector (x1, . . . , xn), where xi denotes whether bidder i is being served. Prominent
examples of single-dimensional environments include k-unit auctions and sponsored search.

Recall that a mechanism is direct if the bidders have very simple action sets (i.e. reporting a scalar).
We now define what we mean by a direct auction.

Definition 1. A direct auction is defined by two rules:

1. An allocation rule x : Rn → ∆(X).

2. A payment rule p : Rn → Rn.

Furthermore, the auction is executed as follows:

1. First, the bids b = (b1, . . . , bn) are collected.

2. [allocation] Implement allocation x(b).

3. [payments] Charge prices p(b).

Similar to last time, we define what it means to be DSIC.

Definition 2 (DSIC (Dominant Strategy Incentive Compatible)). A direct auction (x, p) is DSIC iff
for all i, b−i it is optimal for bidder i to bids its true value. That is, for all z and z′:

z · xi(z, b−i)− pi(z, b−i) ≥ z · xi(z′, b−i)− pi(z′, b−i)

where we abuse notation to define xi(z, b−i) as the probability under x(z, b−i) that bidder i is served.

Finally, recall that the Revelation Principle (covered last time) tells us that any allocation rule that
can be implemented in dominant strategies / ex-post Nash using an indirect mechanism can also be
implemented using a direct, DSIC one.
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2.1 Implementation in Single-Dimensional Environments

We now turn to discuss implementation in single-dimensional environments.

Definition 3 (Implementable Allocation Rule). An allocation rule x for a single-dimensional environ-
ment is implementable if there is a payment rule p such that the sealed-bid auction (x, p) is DSIC.

In addition, we define what it means for an allocation rule to be monotone, which intuitively means
that if a bidder i bids more money, then they should be allocated more service (or at least, they should
not be allocated less).

Definition 4 (Monotone Allocation Rule). An allocation rule x for a single-dimensional environment
is monotone if for every bidder i and bids b−i by the other bidders, the allocation xi(z, b−i) to i is
non-decreasing in i’s bid z.

On the surface, implementable and monotone allocation rules may look completely unrelated. How-
ever, Myerson’s Lemma tells us that they are actually the same!

Lemma 1 (Myerson’s Lemma). Fix a single-dimensional environment.

1. An allocation rule x is implementable if and only if it is monotone.

2. If x is implementable / monotone, there is an essentially unique payment rule such that the sealed-
bid mechanism (x, p) is DSIC, and this payment rule is given by the formula:

∀i, bi : pi(z; b−i) = z · xi(z; b−i)−
∫ z

0

xi(t; b−i)dt+ pi(0, b−i) (1)

3. In particular, there is a unique payment function such that the mechanism is DSIC and additionally
IR (individually rational) with non-positive transfers (that is, bi = 0 implies that pi(b) = 0, for
any setting of b−i).

Proof. (1.) Implementable ⇒ monotone: Recall that x is implementable if there is a payment
rule p such that (x, p) is DSIC. Hence, under the payment rule p, it makes sense for parties to bid their
own value. Formally, for all vi, v

′
i, and b−i, we have the following inequalities:

xi(vi, b−i) · vi − pi(vi, b−i) ≥ xi(v′i, b−i) · vi − pi(v′i, b−i) (2)

xi(v
′
i, b−i) · v′i − pi(v′i, b−i) ≥ xi(vi, b−i) · v′i − pi(vi, b−i) (3)

Together, inequalities 2 and 3 give us that

(xi(vi, b−i)− xi(v′i, b−i)) · (vi − v′i) ≥ 0 (4)

so the two terms on the left hand side are either both nonpositive or both nonnegative. Hence, for all
b−i, the function xi(·, b−i) is non-decreasing.

(2.) Implementable ⇒ payment is essentially unique: Fix i and bids for the other parties b−i.
Since the auction is DSIC, we can specifically conclude that it is not worthwhile for the parties to bid
slightly more (or less) than their true value. Let ui(vi, b−i) := xi(vi, b−i) − pi(vi, b−i). Then it follows
from DSIC that, for all v and ε > 0:

ui(vi + ε, b−i) ≥ xi(vi, b−i) · (vi + ε)− pi(vi, b−i) (5)

ui(vi, b−i) ≥ xi(vi + ε, b−i) · vi − pi(vi + ε, b−i) (6)

Substituting in the definition of ui into inequalities 5 and 6 and rearranging, we get

ui(vi + ε, b−i)− ui(vi, b−i) ≥ xi(vi, b−i) · ε (7)

ui(vi + ε, b−i)− ui(vi, b−i) ≤ xi(vi + ε, b−i) · ε (8)
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Combining inequalities 7 and 8 gives us that

xi(vi, b−i) · ε ≤ ui(vi + ε, b−i)− ui(vi, b−i) ≤ xi(vi + ε, b−i) · ε (9)

If we take inequality 9, divide everything by ε, and use the definition of a derivative, we can see that it
basically corresponds to dui

dvi
= xi(vi, b−i). Now we can finish the proof of this point.

x implementable⇒ xi(·, b−i) non-decreasing

⇒ xi is Riemann integrable

(9)⇒ ui(z, b−i)− ui(0, b−i) =

z∫
0

xi(t, b−i)dt

⇒ pi(z, b−i) = xi(z, b−i) · z −
z∫

0

xi(t, b−i)dt+ pi(0, b−i)

where the second-to-last line follows from the Fundamental Theorem of Calculus, and the last line follows
from rearranging and substituting in the definition of ui. Hence, the payment rule is essentially unique
and given by the formula in the statement of Myerson’s lemma.

(3.) Implementable, NPT (non-positive transfers), and IR (individually rational) ⇒
payment is unique. Recall that NPT implies that pi(0, b−i) ≥ 0 for all b−i, since DSIC implies that
the optimal strategy is to have vi = bi. Furthermore, IR implies that pi(0, b−i) ≤ 0 for all bi. Together,
these imply that pi(0, b−i) = 0 for all bi, so the payment is unique.

(1.) Monotone ⇒ implementable Suppose xi(·, b−i) is non-decreasing for all i and b−i.

Claim 1. Combined with payments as in (1), (x, p) is DSIC.

Proof. Fix i, vi (true type), v′i (candidate mis-report), and b−i. Let

A = xi(vi, b−i) · vi − pi(vi, b−i) =

vi∫
0

xi(t, b−i)dt

Now we show that the utility cannot rise when i gives a candidate misreport v′i. Indeed:

B = xi(v
′
i, b−i) · vi − pi(v′i, b−i)

= xi(v
′
i, b−i) · (vi − v′i) +

∫ v′i

0

xi(t, b−i)dt

= xi(v
′
i, b−i) · (vi − v′i) +

∫ v′i

vi

xi(t, b−i)dt+

∫ vi

0

xi(t, b−i)dt

≤ xi(v′i.b−i) · (vi − v′i) + (v′i − vi)xi(v′i, b−i) +

∫ vi

0

xi(t, b−i)dt

≤ A

where the second-to-last line follows from the fact that xi(·, b−i) is non-decreasing, which lets us bound
the integral above. So it is always worthwhile for i to bid its true value. �

And combining all the points above completes the proof of Myerson’s Lemma. �
We give an illustration of the reason why Myerson’s payment rule yields a DSIC mechanism in

Section 6.
Let us now give an interesting corollary of Myerson’s Lemma.

Corollary 1 (Corollary of Myerson’s Lemma). The greedy allocation rule for sponsored search is im-
plementable. Thus, there is a DSIC auction that maximizes social welfare (which we will see soon).
However, in single-item settings, allocating to the second-highest bidder or the lowest bidder are both
non-implementable.
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The final point of the corollary follows from the fact that allocating to the second-highest or lowest
bidder both constitute non-monotone allocation rules. We will elaborate more about the sponsored
search setting as we talk about applications of Myerson’s Lemma.

3 Applications of Myerson’s Lemma

3.1 Single Item Auction

Let us apply Myerson’s Lemma to a single item auction. Due to monotonicity, we need to allocate the
item to the highest bidder. Note that this means that the allocation rule must look as follows:

xi(z, b−i) =

{
1 if z > maxj 6=i bj

0 otherwise

Finally, applying the price rule given by Myerson’s Lemma yields that we have

pi(z, b−i) =

{
maxj 6=i if z > maxj 6=i bj

0 otherwise

which is exactly the Vickrey auction!

Figure 1: The allocation function given by Myerson’s Lemma for a single-item auction.

3.2 Sponsored Search

We now describe how a sponsored search auction works. Just like the single-item auction, in a sponsored
search auction we have n bidders, who we will think of as advertisers. Unlike the single-item auction,
we have k slots for advertisements with (non-increasing) clickthrough rates α1, . . . , αk.

Our allocation rule will be to allocate the slots greedily based on the bidders’ bids. Namely, the
highest bidder should get the slot with α1, the next highest should get the slot with α2, etc. Using
Myerson’s Lemma, we get that the corresponding payment rule is

pi(z, b−i) =

k∑
`=1

(α` − α`+1) · b(`)−i · χz≥b(`)−i

where b`−i denotes the `th highest bid among bidders j 6= i.

4 Single Item Revenue Maximization

Previously we looked at maximizing social welfare in single item auctions. Today we will look at the
trickier question of revenue maximization.

First off, let us consider the following thought experiment. Suppose there is one bidder whose value
for the item is v, and that is the highest value. Then if we were to give a take-it-or-leave-it offer, the

10-4



Figure 2: The allocation function given by Myerson’s Lemma for a sponsored search auction, following
the greedy algorithm. b(m) denotes the mth highest bid in {bj , j 6= i}

, and the αi’s are the clickthrough rates for the respective slots.

highest achievable revenue is v. Unfortunately, the value v is private, so how can we possibly price the
item optimally?

This simple issue is actually quite fundamental. If we fix any price, there is some v for which it fails
to extract revenue v. This indicates that the bidder’s private value is simply too strong of a benchmark
for the auction to complete against.

We will solve this by assuming that the distribution F over the bidder’s value is known, and perform
an average-case analysis over the distribution.

Let us consider a simple case with one bidder and one item. If we post price r, we get expected
revenue r · (1− F (r)). So if F is the uniform distribution on [0, 1], the optimal choice of r is 1/2, which
achieves expected revenue 1/4. The optimal posted price is also called the monopoly price. Can we do
better? Namely, in the same scenario with one bidder and a uniform value distribution over [0, 1], is
there any auction that does better than just posting the optimal price upfront?

Now suppose there are instead two bidders whose values are uniformly distributed over [0, 1]. The
revenue of Vickrey’s auction is the expectation of the minimum of the two uniform random variables,
which gives us 1/3. Is there anything we can do to do better?

Perhaps surprisingly, the answer is yes! By including a reserve price of 1/2, we get expected revenue
5/12 > 1/31. Is 5/12 the optimal expected revenue of any auction?

5 Revenue-Optimal Auctions

We will be interested in Bayesian, single-dimensional environments. In these, we have n bidders, where
each bidder i has a private (scalar) value vi, which is her value for being served, and vi is sampled from
the distribution Fi, where Fi is known to everyone (the auctioneer and other bidders). Finally, there
is a feasible set X of n-dimensional vectors (x1, . . . , xn) where xi denotes whether bidder i is served.
Examples of these include k-unit auctions and sponsored search.

When we are in this setting, it turns out that there are simple, direct, DSIC, and IR revenue-optimal
auctions!

1Recall that a reserve price is a minimum price under which the seller refuses to sell the good.
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Theorem 1 (Myerson ’81). Consider a single-dimensional setting, where the distribution Fi of every
bidder’s private value is known to all other bidders as well as the auctioneer. Then there exists a
revenue-optimal auction that is simple, direct, DSIC, and individually rational.

Myerson’s auction is optimal, in the sense that the expected revenue when all (which is in their best
interest, since the auction is DSIC) is as large as the expected revenue of any other (potentially indirect)
auction, when bidders use Bayesian Nash equilibrium strategies. In particular, the revenue is as large
as that of any BIC direct mechanism.

Theorem 2. Fix a Bayesian single-dimensional environment, where bidder distributions are F1, . . . , Fn

and F = F1 × . . . × Fn. Let (x, p) be a BIC (Bayesian Incentive Compatible) mechanism satisfying
interim IR and NPT. The expected revenue of this mechanism under truth-telling is

Ev∼F [
∑
i

pi(v)] = Ev∼F [xi(v)ϕi(vi)] (10)

where ϕi(vi) := vi − (1− Fi(vi))/fi(vi) is bidder i’s “virtual value function” (and fi denotes the density
function for Fi).

In particular, note that while the LHS of Equation 10 is the expected revenue, the RHS looks like an
expected welfare, if the values are ϕi(vi). Hence, Equation 10 says that the expected revenue is equal
to the expected virtual welfare, which we now prove.
Proof.

Ev∼F [
∑
i

pi(v)] =
∑
i

Ev∼F [vi · xi(vi, v−i)−
vi∫
0

xi(t, v−i)dt]

=
∑
i

Evi
∑

Fi
[viEv−i

[xi(vi, v−i)]−
vi∫
0

Ev−i
[xi(t, v−i)]dt]

=
∑
i

Evi∼Fi [vix̂i(vi)−
vi∫
0

x̂i(t)dt]

where x̂ is the interim allocation to bidder i. Now we bring in our knowledge of the distribution of vi:

=
∑
i

Evi∼Fi [vix̂i(vi)]−
∑
i

+∞∫
vi=0

vi∫
t=0

x̂i(t)fi(vi)dtdvi

=
∑
i

Evi∼Fi
[vix̂i(vi)]−

∑
i

+∞∫
t=0

+∞∫
vi=t

x̂i(t)fi(vi)dtdvi

=
∑
i

Evi∼Fi
[vix̂i(vi)]−

∑
i

+∞∫
t=0

x̂i(t)(1− Fi(t))dt

=
∑
i

+∞∫
vi=0

vi · x̂i(vi)f(vi)dvi −
∑
i

+∞∫
0

x̂i(vi)(1− Fi(vi))dvi

=
∑
i

∫ +∞

0

x̂i(vi) ·
(
vi −

1− Fi(vi)

f(vi)

)
f(vi)dvi

=
∑
i

Evi [x̂i(vi) · ϕi(vi)]

= Ev∼F [
∑
i

xi(v) · ϕi(vi)]
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6 Illustration of Monotone to Implementable

Figure 3: Example allocation function xi as a function of the value for bidder i.

Figure 4: The shaded area is the payment for bidder i under the payment rule given by Myerson’s
Lemma, given that their value is z.
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Figure 5: The shaded area is the utility for bidder i under the payment rule given by Myerson’s Lemma.

Figure 6: The shaded area is the new payment for bidder i when they bid v′i instead of vi.
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Figure 7: The shaded area represents the new utility for bidder i when they bid v′i instead of their true
value vi. Notice that their old utility ui(vi, b−i) is captured by the area labeled +, but then we subtract
the area labeled -, which is contributed by the event that the price is higher than they truly value the
item. Hence, we get that ui(v

′
i, b−i) ≤ ui(vi, b−i) under this payment rule, and bidders are incentivized

to be truthful.
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