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1 Introduction

We look at the sample complexity of single-item optimal auctions among n bidders. Each bidder has a
value function vi drawn independently from a distributionDi and we denote withD the joint distribution.

We assume we are given a sample set S = {v1, . . . ,vm}, of m valuation vectors, where each vt ∼ D.
Let H denote the class of all dominant strategy truthful single item auctions (i.e. auctions where no
player has incentive to report anything else other than his true value to the auction, independent of
what other players do). Moreover, let

r(h,v) =

n∑
i=1

phi (v) (1)

where phi (·) is the payment function of mechanism h, and r(h,v) is the revenue of mechanism h on
valuation vector v. Finally, let

RD(h) = Ev∼D [r(h,v)] (2)

be the expected revenue of mechanism h under the true distribution of values D.
Given a sample S of size m, we want to compute a dominant strategy truthful mechanism hS , such

that:
ES [RD(hS)] ≥ sup

h∈H
RD(h)− ε(m) (3)

where ε(m)→ 0 as m→∞. More formally, we can define the sample complexity of an auction class as:

Definition 1 (Sample Complexity of Auction Class). The (additive error) sample complexity of an
auction class H and a class of distributions D, for an accuracy target ε is defined as the smallest number
of samples m(ε), such that for any m ≥ m(ε):

ES [RD(hS)] ≥ sup
h∈H

RD(h)− ε (4)

We might also be interested in a multiplcative error sample complexity, i.e.

ES [RD(hS)] ≥ (1− ε) sup
h∈H

RD(h) (5)

If one assumes that the optimal revenue on the distribution is lower bounded by some constant quantity,
then an additive error implies a multiplicative error. For instance, if one assumes that players values
are bounded away from zero with significant probability, then that implies a lower bound on revenue.
Such assumptions for instance, are made in the work of [7]. We will mostly focus on additive error in
this work.

We might also be interested in proving high probability guarantees, i.e. with probability 1− δ:

RD(hS) ≥ sup
h∈H

RD(h)− ε(m, δ) (6)

where for any δ, ε(m, δ)→ 0 as m→∞.
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2 Generalization Error via the Split-Sample Growth Rate

We turn to the general PAC learning framework, and we give generalization guarantees in terms of a
new notion of complexity of a hypothesis space H, which we denote as split-sample growth rate.

Consider an arbitrary hypothesis space H and an arbitrary data space Z, and suppose we are given
a set S of m samples {z1, . . . , zm}, where each zt is drawn i.i.d. from some distribution D on Z. We are
interested in maximizing some reward function r : H × Z → [0, 1], in expectation over distribution D.
In particular, denote with RD(h) = Ez∼D [r(h, z)].

We will look at the Expected Reward Maximization algorithm on S, with some fixed tie-breaking
rule. Specifically, if we let

RS(h) =
1

m

m∑
t=1

r(h, zt) (7)

then ERM is defined as:
hS = arg sup

h∈H
RS(h) (8)

where ties are broken based on some pre-defined manner.
We define the notion of a split-sample hypothesis space:

Definition 2 (Split-Sample Hypothesis Space). For any sample S, let ĤS, denote the set of all hypothesis
hT output by the ERM algorithm (with the pre-defined tie-breaking rule), on any subset T ⊂ S, of size
d|S|/2e, i.e.:

ĤS = {hT : T ⊂ S, |T | = d|S|/2e} (9)

Based on the split-sample hypothesis space, we also define the split-sample growth rate of a hypothesis
space H at value m, as the largest possible size of ĤS for any set S of size m.

Definition 3 (Split-Sample Growth Rate). The split-sample growth rate of a hypothesis H and an ERM
process for H, is defined as:

τ̂H(m) = sup
S:|S|=m

|ĤS | (10)

We first show that the generalization error is upper bounded by the Rademacher complexity evaluated
on the split-sample hypothesis space of the union of two samples of size m. The Rademacher complexity
R(S,H) of a sample S of size m and a hypothesis space H is defined as:

R(S,H) = Eσ

[
sup
h∈H

2

m

∑
zt∈S

σt · r(h, zt)

]
(11)

where σ = (σ1, . . . , σm) and each σt is an independent binary random variable taking values {−1, 1},
each with equal probability.

Lemma 1. For any hypothesis space H, and any fixed ERM process, we have:

ES [RD(hS)] ≥ sup
h∈H

RD(h)− ES,S′
[
R(S, ĤS∪S′)

]
, (12)

where S and S′ are two independent samples of some size m.

Proof. Let h∗ be the optimal hypothesis for distribution D. First we re-write the left hand side, by
adding and subtracting the expected empirical reward:

ES [RD(hS)] = ES [RS(hS)]− ES [RS(hS)−RD(hS)]

≥ ES [RS(h∗)]− ES [RS(hS)−RD(hS)] (hS maximizes empirical reward)

= RD(h∗)− ES [RS(hS)−RD(hS)] (h∗ is independent of S)

Thus it suffices to upper bound the second quantity in the above equation.
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Since RD(h) = ES′ [RS′(h)] for a fresh sample S′ of size m, we have:

ES [RS(hS)−RD(hS)] = ES [RS(hS)− ES′ [RS′(hS)]]

= ES,S′ [RS(hS)−RS′(hS)]

Now, consider the set ĤS∪S′ . Since S is a subset of S ∪ S′ of size |S ∪ S′|/2, we have by the definition
of the split-sample hypothesis space that hS ∈ ĤS∪S′ . Thus we can upper bound the latter quantity by
taking a supremum over h ∈ ĤS∪S′ :

ES [RS(hS)−RD(hS)] ≤ ES,S′
[

sup
h∈ĤS∪S′

RS(h)−RS′(h)

]

= ES,S′
[

sup
h∈ĤS∪S′

1

m

m∑
t=1

(r(h, zt)− r(h, z′t))

]
Now observe, that we can rename any sample zt ∈ S to z′t and sample z′t ∈ S′ to zt. By doing show we
do not change the distribution. Moreover, we do not change the quantity HS∪S′ , since S∪S′ is invariant
to such swaps. Finally, we only change the sign of the quantity (r(h, zt)− r(h, z′t)). Thus if we denote
with σt ∈ {−1, 1}, a Rademacher variable, we get the above quantity is equal to:

ES,S′
[

sup
h∈ĤS∪S′

1

m

m∑
t=1

(r(h, zt)− r(h, z′t))

]
= ES,S′

[
sup

h∈ĤS∪S′

1

m

m∑
t=1

σt (r(h, zt)− r(h, z′t))

]
(13)

for any vector σ = (σ1, . . . , σm) ∈ {−1, 1}m. The latter also holds in expectation over σ, where σt is
randomly drawn between {−1, 1} with equal probability. Hence:

ES [RS(hS)−RD(hS)] ≤ ES,S′,σ

[
sup

h∈ĤS∪S′

1

m

m∑
t=1

σt (r(h, zt)− r(h, z′t))

]
By splitting the supremma into a positive and negative part and observing that the two expected
quantities are identical, we get:

ES [RS(hS)−RD(hS)] ≤ 2ES,S′,σ

[
sup

h∈ĤS∪S′

1

m

m∑
t=1

σtr(h, zt)

]
= ES,S′

[
R(S, ĤS∪S′)

]
where R(S,H) denotes the Rademacher complexity of a sample S and hypothesis H. �

Observe, that the latter theorem is a strengthening of the fact that the Rademacher complexity upper
bounds the generalization error, simply because:

ES,S′
[
R(S, ĤS∪S′)

]
≤ ES,S′ [R(S,H)] = ES [R(S,H)] (14)

Thus if we can bound the Rademacher complexity of H, then the latter lemma gives a bound on the
generalization error. However, the reverse might not be true. Finally, we show our main theorem, which
shows that if the split-sample hypothesis space has small size, then we immediately get a generalization
bound, without the need to further analyze the Rademacher complexity of H.

Theorem 1 (Main Theorem). For any hypothesis space H, and any fixed ERM process, we have:

ES [RD(hS)] ≥ sup
h∈H

RD(h)−
√

2 log(τ̂H(2m))

m
(15)

Moreover, with probability 1− δ:

RD(hS) ≥ sup
h∈H

RD(h)− 1

δ

√
2 log(τ̂H(2m))

m
(16)
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Proof. By applying Massart’s lemma (see previous lecture) we have that:

R(S, ĤS∪S′) ≤

√
2 log(|ĤS∪S′ |)

m
≤
√

2 log(τ̂H(2m))

m
(17)

Combining the above with Lemma 1, yields the first part of the theorem.
Finally, the high probability statement follows from observing that the random variable suph∈H RD(h)−

RD(hS) is non-negative and by applying Markov’s inequality: with probability 1− δ

sup
h∈H

RD(h)−RD(hS) ≤ 1

δ
ES
[

sup
h∈H

RD(h)−RD(hS)

]
≤ 1

δ

√
2 log(τ̂H(2m))

m
(18)

�
The latter theorem can be trivially extended to the case when r : H×Z → [α, β], leading to a bound

of the form:

ES [RD(hS)] ≥ sup
h∈H

RD(h)− (β − α)

√
2 log(τ̂H(2m))

m
(19)

We note that unlike the standard Rademacher complexity, which is defined as R(S,H), our bound,
which is based on bounding R(S, ĤS∪S′) for any two datasets S, S′ of equal size, does not imply a
high probability bound via McDiarmid’s inequality (see e.g. Chapter 26 of [12] of how this is done for
Rademacher complexity analysis), but only via Markov’s inequality. The latter yields a worse dependence
on the confidence δ on the high probability bound of 1/δ, rather than log(1/δ). The reason for the latter
is that the quantity R(S, ĤS∪S′), depends on the sample S, not only in terms of on which points to
evaluate the hypothesis, but also on determining the hypothesis space ĤS∪S′ . Hence, the function:

f(z1, . . . , zm) = ES′

 sup
h∈Ĥ{z1,...,zm}∪S′

1

m

m∑
t=1

σt (r(h, zt)− r(h, z′t))

 (20)

does not satisfy the stability property that |f(z)−f(z′′i , z−i)| ≤ 1
m . The reason being that the supremum

is taken over a different hypothesis space in the two inputs. This is unlike the case of the function:

f(z1, . . . , zm) = ES′
[

sup
h∈H

1

m

m∑
t=1

σt (r(h, zt)− r(h, z′t))

]
(21)

which is used in the standard Rademacher complexity bound analysis, which satisfies the latter stability
property.

3 Sample Complexity of Auctions via Split-Sample Growth

We now present the application of the latter measure of complexity to the analysis of the sample com-
plexity of revenue optimal auctions. Thoughout this section we assume that the revenue of any auction
lies in the range [0, 1]. The results can be easily adapted to any other range [α, β], by re-scaling the
equations, which will lead to blow-ups in the sample complexity of the order of an extra (β − α) multi-
plicative factor. This limits the results here to bounded distributions of values. However, as was shown
in [3], one can always cap the distribution of values up to some upper bound, for the case of regular
distributions, by losing only an ε fraction of the revenue. So one can apply the results below on this
capped distribution.

3.1 A Few Simple Applications

Single bidder and single item. Consider the case of a single bidder and single item auction. In this
setting, the space of hypothesis is H = {post a reserve price r for r ∈ [0, 1]}. We consider, the ERM
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rule, which for any set S, in the case of ties, it favors reserve prices that are equal to some valuation
vt ∈ S. Wlog assume that samples v1, . . . , vm are ordered in increasing order. Observe, that for any set
S, this ERM rule on any subset T of S, will post a reserve price that is equal to some value vt ∈ T .
Any other reserve price in between two values [vt, vt+1] is weakly dominated by posting r = vt+1, as it
does not change which samples are allocated and we can only increase revenue. Thus the space ĤS is a
subset of {post a reserve price r ∈ {v1, . . . , vm}. The latter is of size m. Thus the split-sample growth
of H is τ̂H(m) ≤ m. This yields:

ES [RD(hS)] ≥ sup
h∈H

RD(h)−
√

2 log(2m)

m
(22)

Equivalently, the sample complexity is mH(ε) = O
(

log(1/ε)
ε2

)
.

Multiple i.i.d. regular bidders and single item. In this case the space of hypotheses are the space
of second price auctions with some reserve r ∈ [0, 1]. Again if we consider ERM which in case of ties
favors a reserve that equals to a value in the sample (assuming that is part of the tied set, or outputs
any other value otherwise), then observe that for any subset T of a sample S, ERM on that subset will
pick a reserve price that is equal to one of the values in the samples S. Thus τ̂H(m) ≤ n ·m. This yields:

ES [RD(hS)] ≥ sup
h∈H

RD(h)−
√

2 log(2 · n ·m)

m
(23)

Equivalently, the sample complexity is mH(ε) = O
(

log(n/ε2)
ε2

)
.

Non-i.i.d. regular bidders, single item, second price with player specific reserves. In this
case the space of hypotheses HSP are the space of second price auctions with some reserve ri ∈ [0, 1] for
each player i. Again if we consider ERM which in case of ties favors a reserve that equals to a value in
the sample (assuming that is part of the tied set, or outputs any other value otherwise), then observe
that for any subset T of a sample S, ERM on that subset will pick a reserve price ri that is equal to one
of the values vit of player i in the sample S. There are m such possible choices for each player, thus mn

possible choices of reserves in total. Thus τ̂H(m) ≤ mn. This yields:

ES [RD(hS)] ≥ sup
h∈HSP

RD(h)−
√

2n log(2m)

m
(24)

If H is the space of all dominant strategy truthful mechanisms, then by prophet inequalities (see [5]),
we know that suph∈HSP RD(h) ≥ 1

2 suph∈H RD(h). Thus:

ES [RD(hS)] ≥ 1

2
sup
h∈H

RD(h)−
√

2n log(2m)

m
(25)

3.2 Non-i.i.d. regular bidders single item

In this case the space of hypotheses are the space of all virtual welfare maximizing auctions: For each
player i, pick a monotone function φ̂i(vi) ∈ [−1, 1] and allocate to the player with the highest non-
negative virtual value, charging him the lowest value he could have bid and still win the item. If no
player has non-negative virtual value, then don’t allocate the item.

A first failed attempt. Observe, that for any such auction, ERM on a sample S of size m, will
output a function φ̂i(·) for each player that is a step function on the observed valuations (see Figure 1.
The reasoning is the following: at every realization of the valuations in the sample, each player is paying
the smallest value he could have submitted and still win the item. Now consider a single player i and
let v1i ≤ . . . ≤ vmi be the valuations for this player that appear in the sample S. Consider a virtual value
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Figure 1: Any non-step function (blue line), can be transformed to a step function (red line), which
yields point-wise higher revenue, for any valuation vector in the sample S.

function φ̂i(vi) that is not a step function, i.e. the function is not constant in the region between two

values [vti , v
t+1
i ). By setting the value of the function in that region, equal to φ̂i(v

t
i), then we are not

changing the allocation function for any of the realized valuation vectors in the sample. Moreover, the
new function that we created is pointwise lower than the previous virtual value function. Thus any time
that player i wins for some realization of the value vector, the minimum value he needs to report to still
win, is weakly larger. Thus we are collecting more revenue, for any realization vt in S, by doing this
modification.

Moreover, for any subset T of S, the ERM on T also outputs for each player i a step virtual value
function φ̂i which increases only at points vti ∈ T . The latter is also obviously included in the class of
step functions on values vti ∈ S, since these are more valuation points. Thus:

ĤS ⊆ {Virtual value maximizers, w. each virtual value function being a step function on points vti ∈ S}

An alternative way of expressing ĤS is the following: for each player i and for each vti ∈ S, assign a
rank σ(i, vti) ∈ [n ·m]. Moreover, this ranking is monotone for each bidder. Then the mechanism for

each realization vt allocates to the player with the highest rank, charging him the smallest vt
′

i for which
he remains the winner. We can count the number of all such mechanisms as follows: for each player i
and for each rank t ∈ [n ·m], we can report the smallest value vti ∈ S, for which the rank of the player
i goes above t. This uniquely defines a monotone ranking for player i. The number of all such possible
rankings for a player is mn·m, leading to the bound: |ĤS | ≤ mn2·m. Thus: τ̂H(m) ≤ mn2·m.

However, the latter is still very large and as the number of samples m is in the exponent. Thus the
split-sample growth results will not give a bound which decays to zero. This is not a problem of the
split-sample growth approach, but rather the space of all virtual welfare maximizers is too large to run
ERM on top of it. To deal with this will consider a coarsening Hε of our hypothesis space H, and run
ERM on Hε, rather than H. Then we will argue that the best mechanism in Hε is ε-close in terms of
expected revenue to the best mechanism in H.

Coarsening the hypothesis space. We can do the coarsening of the space of virtual value functions
in two ways: either group values vti in buckets of size ε, rounding each value to the closest multiple of ε

or group virtual values φ̂i(v
t
i) in buckets of size ε, allowing the virtual value function to take values only

on multiples of ε. If we run ERM on any of these sub-spaces Hε, then the number of possible virtual
value functions that can appear in Ĥε

S (i.e. returned by ERM over Hε applied to a subset T of S), is

at most O
(

(1/ε)n
2/ε
)

, which does not grow exponentially with the sample size m. The first approach

was taken in the paper of [3], while the second approach was taken in the paper of [7]. We will take the
second approach and limit the space of values of the virtual value function and argue more formally it’s
sample complexity and it’s error from the overall optimal mechanism.
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Figure 2: An example of a virtual value function in Hε (blue line on left and right figure) and an example
of a coarse step value function in Hε

S , that only changes at points vti ∈ S (red line on right figure).

Coarse virtual value functions. We consider the following hypothesis space (see also Figure 2)

Hε = {Virtual value maximizers, with virtual value functions taking values in multiples of ε}

We first argue about the sample complexity of Hε and then we show that: suph∈Hε RD(h) ≥
suph∈H RD(h)− ε.

First observe, that by the reasoning that we did above, we have that the split-sample hypothesis
space is a subset of the following set:

Ĥε
S ⊆

{
Virtual value maximizers, w. each virtual value function being
a monotone step function on points vti ∈ S taking values in multiples of ε

}
The number of such functions for each player is m1/ε, since every such monotone function φ̂i can be
uniquely defined by defining for each multiple of ε, κε, the smallest value vti for which φ̂i(v

t
i) ≥ κε.

Thus the number of possible such monotone step functions is: m1/ε. Therefore the set of all possible
combinations of such functions, one for each player, is mn/ε. Thus τ̂Hε(m) ≤ mn/ε. Hence, by applying
Theorem 1, if hεS is the output of ERM over Hε on set S, we get:

ES [RD(hεS)] ≥ sup
h∈Hε

RD(h)−
√

2n log(2m)

ε ·m
(26)

Error of Hε on the distribution. We now turn to comparing the optimal over Hε on the true
distribution D, with the optimal over H. We will show that for any product distribution D, we do not
lose more than ε.

Lemma 2. If D = D1 × . . .×Dn and each Di is a regular distribution, then:

sup
h∈Hε

RD(h) ≥ sup
h∈H

RD(h)− ε (27)

Proof. Consider, the optimal mechanism for a product of regular distributions D = D1× . . .×Dn. By
Myerson’s theorem this is equal to the mechanism that maximizes the virtual welfare for virtual value
functions:

φi(vi) = vi −
1− Fi(vi)
fi(vi)

(28)

where Fi(·) is the CDF and fi(vi) is the pdf of distribution Di. By regularity, the later function is
monotone.

The optimal mechanism h∗ for D, allocates to the player with the highest virtual value, as long as
this virtual value is non-negative and to no player otherwise. Let i∗ = arg maxi∈[n] φi(vi), denote the
random variable that indicates who is the winner in the optimal auction.

16-7



Figure 3: True virtual value function and coarse approximation of it, that achieves ε approximate
expected revenue.

Let hε, be the mechanism defined by the following virtual value functions (see also Figure 3): for any
number x, let bxcε be the closest multiple of ε below x, then:

φεi(vi) =

{
bφi(vi)cε if φi(vi) ≥ 0

−ε if φi(vi) < 0
(29)

Moreover, let iε = arg maxi∈n φ
ε
i(vi), denote the random variable that indicates who is the winner in the

auction hε.
From Myerson’s characterization we know that the expected revenue of any mechanism, when valu-

ations are independent, is equal to its expected virtual welfare. Thus:

RD(hε) = Ev∼D

[
[φiε(viε)]

+
]

(30)

Since, φεi is a rounded down version of φi, we have:

RD(hε) ≥ Ev∼D

[[
φεiε(viε)

]+]
(31)

Since iε maximizes φεi , we have:

RD(hε) ≥ Ev∼D

[
max
i

[φεi(vi)]
+
]

(32)

Since, φεi(vi) is also at least φi(vi)− ε:

RD(hε) ≥ Ev∼D

[
max
i

[φi(vi))]
+ − ε

]
= Ev∼D

[
[φi∗(vi∗)]

+
]
− ε = RD(h∗)− ε (33)

Hence we can conclude that:
sup
h∈Hε

RD(h) ≥ RD(hε) ≥ RD(h∗)− ε (34)

�
Combining Equation (26) and Lemma 2, we get:

ES [RD(hεS)] ≥ sup
h∈H

RD(h)−
√

2n log(2m)

ε ·m
− ε (35)
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Picking, ε =
(

2n log(2m)
m

)1/3
, we get:

ES [RD(hS)] ≥ sup
h∈H

RD(h)− 2

(
2n log(2m)

m

)1/3

(36)

Equivalently, the sample complexity is mH(ε) = O
(
n log(1/ε)

ε3

)
.

The latter rate was obtained by [7] via the use of the notion of the pseudo-dimension of a hypothesis
class. The pseudo-dimension based proof is more involved, but offers better high probability bounds, in
terms of dependence on δ. In particular, the pseudo dimension upper bounds the classical Rademacher
complexity, and not only the split-sample version that we presented here. Hence, subsequently we can
invoke the McDiarmid based proof we mentioned in the previous lecture to show that with probability
1− δ over the sample S:

RD(hS) ≥ sup
h∈H

RD(h)− 2

(
2n log(2m)

m

)1/3

−O

(√
log(1/δ)

m

)
(37)

which has a dependence of log(1/δ) rather than 1/δ which is implied by Theorem 1.

4 Historical Remarks

The seminal work of [9] gave a recipe for designing the optimal truthful auction when the distribution
over bidder valuations is completely known to the auctioneer. Recent work, starting from [2], addresses
the question of how to design optimal auctions when having access only to samples of values from the
bidders. We refer the reader to [3] for an overview of the existing results in the literature. [2, 7, 8, 1]
give bounds on the sample complexity of optimal auctions without computational efficiency, while recent
work has also focused on getting computationally efficient learning bounds [3, 11, 4].

The results we presented here focus solely on sample complexity and not computational efficiency
and thus is more related to [2, 7, 8, 1]. The latter work, uses tools from supervised learning, such as
pseudo-dimension [10] (a variant of VC dimension for real-valued functions), compression bounds [6]
and Rademacher complexity [10, 12] to bound the sample complexity of simple auction classes. We
presented an analysis via a new measure of sample complexity, which is a strengthening the Rademacher
complexity analysis.
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