
6.853 Algorithmic Game Theory and Data Science February 14, 2019

Lecture 4
Lecturer: Vasilis Syrgkanis Scribe: Vasilis Syrgkanis

Last time we saw a simple example of online learning where the learner wanted to decide between
two actions on every single day and his goal was to achieve a loss in expectation that is at least as
good as the loss of the best fixed action in hindsight. We saw that a simple tweak to the very simple
Follow-the-Leader algorithm, namely the Follow-the-Regularized-Leader algorithm, achieved the latter
property, which we called no-regret.

In this lecture we will see a vast generalization of the above example, which is known as online convex
optimization and we will also see how the Follow-the-Regularized-Leader algorithm and its analysis
directly generalizes to this setting.

We will then see how the existence of no-regret algorithms for online convex optimization, imply
von-Neumann’s minimax theorem for zero-sum games. Since the minimax theorem for zero-sum games
is equivalent to LP duality, we will thus see how the existence of no-regret algorithms implies LP duality.

1 Online Convex Optimization: A General Framework

Last time we considered a learner who wants to decide between two actions {H,L} and his goal was
to pick a probability pt ∈ [0, 1] to play on each day, while at the end of the day he receives a loss
f(pt; `t) = pt · `Ht + (1 − pt) · `Lt (i.e. the expected loss). Online convex optimization is the following
generalization of the above example: On each day t:

1. the learner picks a vector pt from a convex set S in Rd

2. an adversary picks a convex function ft : S → R, which is L-Lipscitz with respect to some norm
‖ · ‖ (i.e. ‖ft(p)− ft(p′)‖ ≤ L · ‖p− p′‖) and differentiable1

3. the learner incurs a loss ft(pt) and observes the function ft (i.e. he can evaluate the function at
any point after time t)2

Regret. The regret of an online convex optimization algorithm is the difference between the cumulative
loss of the algorithm and the loss of the best fixed p ∈ S in hindsight, in the worst-case over loss sequences:

Regret(T) = sup
`1,...,`T

(
T∑
t=1

ft(pt)− inf
p∈S

T∑
t=1

ft(p)

)
(1)

An algorithm is no-regret, if its regret grows sub-linearly with time, i.e., Regret(T) = o(T). Equiva-
lently, if its average regret Regret(T)/T goes to zero as T goes to infinity.

Online convex optimization encloses many examples that have been studied in online learning theory.
We present here two of them:

Example 1 (Expert Setting). In the expert setting, the learner wants to decide among K actions,
often referred to as “experts” in the literature. Every day the algorithm picks a distribution pt ∈ ∆K

over this K actions and draws an action it from this distribution. An adversary picks a loss vector
`t = (`1t , . . . , `

K
t), where `it is the loss of action i on day t. The algorithm receives an expected loss of

ft(pt) = 〈pt, `t〉, where 〈·, ·〉 denotes the inner product between two vectors. The goal of the algorithm

1In fact we do not need to assume that the function is differentiable and everything we do in this note continues to hold
if we replace gradients with sub-gradients.

2As you might uncover in the assignment, you only need to observe the gradient of the function ft after day t, rather
than being able to evaluate the function at every point.

4-1

is to compete with the loss of the best fixed action in hindsight, which equivalently can be written as
supp∈∆K

∑T
t=1 ft(p).

It is easy to see that the expert setting is a special case of online convex optimization. The convex set
S ⊆ RK from which the learner is picking is the simplex and the loss function that the adversary picks
every day is not an arbitrary convex function, but a linear function associated with a vector `t ∈ RK .
Without the simplex constraint, but for an arbitrary set S, the latter is known in the literature as online
linear optimization. As you might uncover in the assignment, online convex optimization can always be
reduced to online linear optimization.

Example 2 (Online Quadratic Optimization). Every day the learner wants to pick a point pt ∈ S ⊆ Rd
and the adversary picks a point zt ∈ S. The goal of the learner is to pick a point pt such that it is close
to zt. More concretely, his loss is the squared euclidean norm, between pt and zt: ft(pt) = ‖pt − zt‖2.
The goal of the learner is to pick a sequence of points such that they incur a loss which is comparable to
the best fixed point in hindsight. This example is a special case of online convex optimization, with the
extra property that the loss functions that the adverary picks are not just convex, but strongly convex.
The latter can be leveraged to get regret bounds that are much better than what we will see in this lecture,
i.e. regret that increases as O(log(T)).

Example 3 (Online Least Squares Linear Regression). Every day the adversary picks a pair (xt, yt) of a
point xt ∈ Rd and an outcome yt ∈ R. The learner wants to find a good linear function that approximates
the relation between xt and yt in hindsight. Specifically, he wants to pick a point pt ∈ Rd, with ‖pt‖ ≤ H,

and his loss at time t will be: ft(pt) = (〈pt, xt〉 − yt)2
.

The Follow-the-Regularized-Leader algorithm can be easily generalized to the online convex opti-
mization setting as follows:

Follow-the-Regularized-Leader (FTRL): p̃t = argmin
p∈S

t−1∑
τ=1

fτ (p)︸ ︷︷ ︸
Ft−1(p)

+
1

η
R(p) = argmin

p∈S
F̃t−1(p) (2)

In the above R(p) is the regularizer function which we assume to be strongly convex. In the case where
S = R, in the last lecture, strong convexity simply meant that R′′(p) ≥ 1. In a multi-dimensional space,
strong convexity is the generalization of that condition and is defined as follows:

Definition 1 (Strongly Convex Function). A function R : Rd → R is 1
η -strongly convex with respect to

a norm ‖ · ‖, if for any p and p0 in S:

R(p) ≥ R(p0) + 〈∇R(p0), p− p0〉+
1

2η
‖p− p0‖2 (3)

where ∇R(·) is the gradient of the function.

A pictorial way of viewing a strongly convex function is as follows: take the linearization of the
function R(p) around a point p0 (i.e. consider the linear function h(p) = R(p) + 〈∇R(p0), p − p0〉,
depicted with a dashed blue in Figure 1). Then the value of the function at any other point p 6= p0,
should not only be above h(p), but it should be above h(p) by a large margin that grows with the squared
distance of p from p0, i.e. 1

2η‖p− p0‖2.
Similar to what we did in the single-dimension, we can show more generally, that strong convexity

leads to stability, i.e. that if two functions are strongly convex and their difference is a Lipschitz function,
then their minima have to be close. We remind the reader the pictorial proof of this fact from the previous
lecture in Figure 2.

Lemma 1 (Closeness of minima of strongly convex functions). Consider two functions f : S → R and
g : S → R, that are 1

η -strongly convex with respect to some norm ‖ · ‖ and such that their difference

h(p) = g(p)−f(p) is an L-Lipschitz function with respect to the same norm. Then if pf = argminp∈S f(p)
and pg = argminp∈S g(p), it must hold that: ‖pf − pg‖ ≤ η · L.

4-2

Figure 1: Pictorial distribution of strong convexity of a function.

Proof. By the definition of strong convexity of f(·) for any p ∈ S:

A = f(p)− f(pf) ≥ 〈∇f(p0), p− pf 〉+
1

2η
· ‖p− pf‖2 (by 1

η -strong convexity of f)

≥ 1

2η
· ‖p− pf‖2 (since pf is minimizer, 〈∇f(p0), p− pf 〉 ≥ 0)

Similarly, we can show that B = g(p)− g(pg) ≥ 1
2η · ‖p− pg‖

2.
Finally, we can conclude by invoking Lipschitzness of the difference function:

L · ‖pf − pg‖ ≥ h(pf)− h(pg) (by lipschitzness of h)

= g(pf)− f(pf)︸ ︷︷ ︸
C

−(g(pg)− f(pg)︸ ︷︷ ︸
D

) (by definition of h)

= g(pf)− g(pg)︸ ︷︷ ︸
A

+ f(pg)− f(pf)︸ ︷︷ ︸
B

(by re-arranging)

≥ 1

2η
‖pf − pg‖2 +

1

2η
‖pg − pf‖2 (by strict convexity of f(·) and g(·))

=
1

η
‖pf − pg‖2

Dividing the above inequality by ‖pf − pg‖ yields the Lemma. �
With this generalization of the stability lemma for strongly convex functions we are now read to

prove the generalization of the regret bound for the FTRL algorithm from the previous lecutre.

Theorem 1. The expected regret of FTRL with a 1-strongly convex regularizer R(p) with respect to a
norm ‖ · ‖, a parameter η, and L-Lipschitz loss functions with respect to the norm ‖ · ‖, is upper bounded
by:

Regret(T) ≤ maxp∈S R(p)−minp∈S R(p)

η
+ η · L2 · T (4)

Proof. We will show this again in two lemmas. Let’s consider a slight modification of the FTRL
algorithm which includes the next iteration’s loss vector in the optimization:

Be-the-Regularized-Leader (BTRL): p̃∗t = argmin
p∈S

F̃t(p) (5)

Lemma 1.1 (BTRL vs FTRL). The regret of FTRL is at most the regret of BTRL plus L ·
∑T
t=1 |p̃t −

p̃t+1|. The latter is upper bounded by η · L2 · T .

4-3

Figure 2: The proof of Lemma 1 follows immediately by noting that C−D = A+B in the above figure,
together with the fact that C −D ≤ L|pf − pg| by Lipschitzness of the difference of the two functions
and A+B ≥ 1

η (pf − pg)2 by the strict convexity of the two functions.

Proof. We will show that the loss of the FTL algorithm is at most the loss of the BTL algorithm plus
the stability term.

T∑
t=1

ft(p̃t; `t) =

T∑
t=1

ft(p̃
∗
t) +

T∑
t=1

(ft(p̃t)− ft(p̃∗t))

≤
T∑
t=1

f(p∗t ; `t) + L

T∑
t=1

‖pt − p∗t ‖ (by L-Lipschitzness of ft)

≤
T∑
t=1

f(p∗t ; `t) +

T∑
t=1

‖pt − pt+1‖ (by the definition of FTRL and BTRL, p̃∗t = p̃t+1)

The second part follows by observing that p̃t and p̃t+1 are minimizers of F̃t−1(·) and F̃t(·) respectively.
The latter are 1

η -strongly convex functions. Moreover, F̃t+1(p)− F̃t(p) = ft(p), which is an L-Lipschitz

function. Thus invoking Lemma 1, we get that |p̃t − p̃t+1| ≤ η · L. �

Lemma 1.2 (BTRL has small regret). The regret of BTRL is upper bounded by
maxp∈S R(p)−minp∈S R(p)

η .

Proof. Let f0(p) = 1
ηR(p) and p̃∗0 = argminp∈S

1
ηR(p). Suppose by induction that:

t∑
τ=0

fτ (p̃∗τ)︸ ︷︷ ︸
loss of BTL until time t

including fake loss at τ = 0

≤ F̃t(p̃
∗
t)︸ ︷︷ ︸

cummulative loss of best fixed action until time t
including fake loss at τ = 0

(6)

Then we conclude the induction step that:

t+1∑
τ=0

fτ (p̃∗τ) = ft+1(p̃∗t+1) +

t∑
τ=0

fτ (p̃∗τ)

≤ ft+1(p̃∗t+1) + F̃t(p̃
∗
t) (by induction hypothesis)

≤ ft+1(p∗t+1) + F̃t(p
∗
t+1) (by optimality of p̃∗t)

= F̃t+1(p̃∗t+1) (by definition of Ft(p))

4-4

which concludes the induction step. Finally, the base case of t = 0 is satisfied by the definition of p∗0.
Thus we can conclude that:

T∑
t=0

ft(p̃
∗
t) ≤ min

p∈S

T∑
t=0

ft(p) ≤ max
p∈S

f0(p) + min
p∈S

T∑
t=1

ft(p)

By re-arranging we get:

T∑
t=1

ft(p̃
∗
t)−min

p∈S

T∑
t=1

ft(p) ≤ max
p∈S

1

η
R(p)−min

p∈S

1

η
R(p)

�
Combining the two lemmas yields the theorem. �
An easy corollary of the latter theorem is that:

Corollary 1. Let R∗ = maxp∈S R(p) −minp∈S R(p). Then expected regret of FTRL with η =
√

R∗

T is

at most:
Expected-Regret(T) ≤ 2

√
R∗ · T (7)

1.1 Expert Setting and Negative Entropy Regularization

Let’s now look at the expert setting with K actions and at the case when the regularizer is the negative
entropy:

R(p) =

K∑
i=1

pi log(1− pi) (8)

We first show that the entropy function is 1-strongly convex with respect to the `1 norm ‖x‖1 =∑K
i=1 |xi|.

Lemma 2 (Strong convexity of negative entropy). The negative entropy function is 1-strongly convex

with respect to the `1 norm ‖x‖1 =
∑K
i=1 |xi|.

Proof. Strong convexity is equivalent to showing that xT∇2R(p)x ≥ ‖x‖21 for all p ∈ ∆K and x ∈ Rd,
where ∇2R(·) is the Hessian of function R(·), i.e. the matrix whose (i, j) entry is ∂2R(p)

∂pi∂pj .
For the case of the negative entropy function we have:

∂2R(p)

∂pi∂pj
=

{
1
pi

if i = j

0 o.w.
(9)

Thus we have:

xT∇2R(p)x =

K∑
i=1

(xi)2

pi

=

(
K∑
i=1

pi

)
·

(
K∑
i=1

(xi)2

pi

)
(since p is a distribution)

≥

(
K∑
i=1

√
pi
|xi|√
pi

)2

(by Cauchy-Schwarz inequality)

≥

(
K∑
i=1

|xi|

)2

= ‖x‖21

�

4-5

For this type of a regularizer we can find in closed form the optimal solution to the problem that
FTRL:

p̃t = argmin
p∈[0,1]

〈p,
t−1∑
τ=1

`τ 〉+
1

η

K∑
i=1

pi log(pi)

By taking the first order condition of the Langrangian of the optimization problem, where we include
the constraint that

∑K
i=1 p

i = 1

L(p, λ) = 〈p,
t−1∑
τ=1

`τ 〉+
1

η

K∑
i=1

pi log(pi) + λ

(
1−

K∑
i=1

pi

)

We can conclude that

p̃it =
exp{−η ·

∑t−1
τ=1 `

i
τ}∑K

j=1 exp{−η ·
∑t−1
τ=1 `

j
τ}

A nice way of looking at the latter algorithm, is that at each iteration we keep a weight wit for each
action i ∈ [K], starting from wi0 = 1

K . Then at each iteration we update the weight of each algorithm
as:

wit+1 = wit · exp{−η · `it} (10)

and at each iteration we play each action with probability proportional to its weight!
This algorithm is a very well-known algorithm, known under various names, such as exponential

weight updates, EXP, multiplicative weight updates, Hedge, . . . , and has found many applications in
many areas of computer science even ones not directly related to online learning.

Our general regret bound for the Follow-the-Regularized-Leader algorithm implies the following corol-
lary for the expert setting:

Corollary 2. The Exponential Weight Updates algorithm with parameter η =
√

log(K)
T achieves expected

regret: 2
√

log(K) · T in the expert setting with losses in [0, 1].

Proof. Since linear loss functions with losses in [0, 1], are 1-Lipschitz with respect to the ‖ · ‖1 norm
and since the negative entropy is a 1-strongly convex regularizer with respect to the ‖ ·‖1 norm, and also
satisfies that R(p) ∈ [− log(K), 0], we get by Theorem 1 that the regret of Exponential Weight Updates
is:

Regret(T) ≤ log(K)

η
+ ηT (11)

By the choice of η we get the corollary. �
Importantly, the regret of the Exponential Weights algorithm increases only logarithmically with the

number of actions available!

2 Playing Zero-Sum Games with Online Learning Algorithms

In the first lecture we considered zero sum games among two players defined by a m× n loss matrix A
(equivalently a payoff matrix), where m is the number of actions of the row player and n is the number
of actions of the column player. If the row player plays i and the column player plays j, then the row
player receives a loss of Aij ∈ [0, 1] and the column player a loss of −Aij (equivalently a reward of Aij .
Thus the row player is trying to minimize the entry of the matrix that is picked and the column player
to maximize it.

If both players are randomizing, and if we denote with x ∈ ∆m the probability distribution of the
row player and with y ∈ ∆n the probability distribution of the column player, then the expected loss of

4-6

the row player is xTAy and similarly this is the reward of the column player. Von-Neumann’s minimax
theorem states that:

min
x∈∆m

max
y∈∆n

xTAy = max
y∈∆n

min
x∈∆m

xTAy (12)

Moreover, each of this optimization problems can be phrased as an LP and the pair (x̄, ȳ) of solutions
to each of these problems constitutes a Nash equilibrium of the game.

We will show here that the proof of this theorem immediately follows by the existence of a no-regret
algorithm for the expert setting. We will do this as follows: suppose that the zero-sum game is played
repeatedly for T iterations. On each day t the row player picks a strategy xt and the column player a
strategy yt based on the past. Then the row player incurs a loss 〈xTt , Ayt〉 and the column player a loss
−〈yt, ATxt〉. Thus both players are essentially facing an online learning problem and in particular their
problem is an expert setting problem.

Thus we will imagine both players deciding their strategy on each day based on a no-regret algorithm.
We saw in the last section that such algorithms exist.

Theorem 2. If there exists a no-regret algorithm for the expert setting, then

min
x∈∆m

max
y∈∆n

xTAy = max
y∈∆n

min
x∈∆m

xTAy (13)

Moreover, if (x1, y1), . . . , (xT , yT) is the history of play when both player’s use a no-regret algorithm with

average regret ε(T), then the strategies x̄ = 1
T

∑T
t=1 xt and ȳ = 1

T

∑T
t=1 yt are an 2ε(T)-approximate

Nash equilibrium, i.e.:

x̄TAȳ ≤ min
x
xTAȳ + 2ε(T) (14)

x̄TAȳ ≥ max
y

x̄TAy − 2ε(T) (15)

(16)

Proof. First observe that by the ε(T)-regret definition for each player we have:

V =
1

T

T∑
t=1

xTt Ayt ≤ min
x

1

T

T∑
t=1

xTAyt + ε(T) = min
x
xTAȳ + ε(T) (17)

V =
1

T

T∑
t=1

xTt Ayt ≥ max
y

1

T

T∑
t=1

xTt Ay − ε(T) = max
y

x̄TAy − ε(T) (18)

Thus these two inequalities immediately yield:

min
x
xTAȳ ≥ max

y
x̄TAy − 2ε(T) (19)

The latter essentially is the crucial property that we need. From here on it’s a matter of combining this
property with a bunch of trivial inequalities to conclude both parts of the theorem.

Part 1. For the minimax theorem we observe that:

max
y

min
x
xTAy ≥ min

x
xTAȳ ≥ max

y
x̄TAy − 2ε(T) ≥ min

x
max
y

xTAy − 2ε(T) (20)

Combining the above with the trivial inequality that maxy minx x
TAy ≤ minx maxy x

TAy, and taking
T →∞, which takes ε(T)→ 0, yields the result.

4-7

Part 2. For the 2ε(T)-equilibrium we observe that:

x̄TAȳ ≤ max
y

x̄TAy ≤ min
x
xTAȳ + 2ε(T)

x̄TAȳ ≥ min
x
xTAȳ ≥ max

y
x̄TAy − 2ε(T)

�
An intersting point to note, is that we did not really need both players to use a no-regret algorithm.

The column player for instance, could be always best responding to the action of the row player. This is
trivially a no-regret algorithm for the column player. This property has been utilized in the literature,
when the actions of the column player are given implicitly and are exponential in the size of their
representation, but when we have a polynomial time algorithm for computing the best action conditional
on the strategy of the row player. Hence, in such situations we can still compute an approximate Nash
equilibrium in polynomial time.

Moreover, as we will ask you in your assignment, the existence of no-regret algorithms for the more
general setting of online convex optimization immediately imply the general version of von-Neumann’s
minimax theorem, which pertains to non-linear zero-sum games. In particular, consider a two player
zero-sum game where player 1 picks a strategy x ∈ S where S is convex subset of Rm and player 2 picks
a strategy y ∈ Q where Q is a convex subset of Rn. When player 1 picks x and player 2 picks y, player
1 receives a loss of c(x, y) and player 2 receives a loss of −c(x, y). If the function c(x, y) is convex in its
first argument and concave in its second argument, then:

min
x∈S

max
y∈Q

c(x, y) = max
y∈Q

min
x∈S

c(x, y) (21)

If we imagine this zero-sum game played repeatedly and each player using an online convex optimization
algorithm to decide its strategy at each time step t, then we can prove the latter minimax theorem, as well
as the fact that their average strategies x̄ = 1

T

∑T
t=1 xt and ȳ = 1

T

∑T
t=1 yt, constitute an approximate

Nash equilibrium of the zero-sum game.

3 Historical Remarks

The online learning framework dates back to the very early work of Hannan [Han57] on consistency and of
Blackwell [B+56] on approachability, which are both terms that are very closely related to achieving the
no-regret condition. The exponential weights algorithm dates back to the early and very influential work
of Littlestone and Warmuth [LW94] and Freund and Schapire [FS97] and Kivinen and Warmuth [KW97].
The analysis of Hedge, through the Follow-the-Regularized-Leader lens is due to Shalev-Shwartz and
Singer [SSS07a, SSS07b]. A very comprehensive survey of Follow-the-Regularized-Leader and related
algorithms can be found in [SS12].

The proof of the minimax theorem through online learning is due to [FS99], who analyzed the
multiplicative weights algorithm in zero-sum games. No-regret learning in appropriately defined zero
sum games has found tremendous applications in many areas of computer science (see e.g. some random
samples [HHRW16], [PST95]) and a survey here [AHK12].

References

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of Computing, 8(6):121–164, 2012.

[B+56] David Blackwell et al. An analog of the minimax theorem for vector payoffs. Pacific Journal
of Mathematics, 6(1):1–8, 1956.

[FS97] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, August 1997.

4-8

[FS99] Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative weights.
Games and Economic Behavior, 29(1):79 – 103, 1999.

[Han57] James Hannan. Approximation to bayes risk in repeated play. Contributions to the Theory
of Games, 3:97–139, 1957.

[HHRW16] Justin Hsu, Zhiyi Huang, Aaron Roth, and Zhiwei Steven Wu. Jointly private convex pro-
gramming. In Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’16, pages 580–599, Philadelphia, PA, USA, 2016. Society for Industrial
and Applied Mathematics.

[KW97] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent
for linear predictors. Inf. Comput., 132(1):1–63, January 1997.

[LW94] N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212 – 261, 1994.

[PST95] Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast approximation algorithms for
fractional packing and covering problems. Math. Oper. Res., 20(2):257–301, April 1995.

[SS12] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and
Trends in Machine Learning, 4(2):107–194, 2012.

[SSS07a] Shai Shalev-Shwartz and Yoram Singer. Online learning: Theory, algorithms, and applica-
tions. 2007.

[SSS07b] Shai Shalev-Shwartz and Yoram Singer. A primal-dual perspective of online learning algo-
rithms. Mach. Learn., 69(2-3):115–142, December 2007.

4-9

