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Comparison with Part (1)

* Optimization vs Estimation
* Part 1: find revenue maximizing mechanism from data
* Part 2: interested in inference of private parameters of structural model

e Truthful vs Strategic Data
* Part 1: data set were i.i.d. samples of player valuations
e Part 2: data are observed outcomes of strategic interaction (e.g. bids in FPA)

* Technical Exposition vs Overview
* Part 1: in-depth exposition of basic tools

. (Ijart 2: overview of econometric theory for games literature with some in-depth drill
owns



A Primer on Econometric Theory

Basic Tools and Terminology



Econometric Theory

* Given a sequence of i.i.d. data points Z4, ..., Z,,

* Each Z; is the outcome of some structural model
Z; ~D(0,y),with 8, € ©

* Parameter space © can be:
* Finite dimensional (e.g. R%): parametric model
* Infinite dimensional (e.g. function): non-parametric model

* Mixture of finite and infinite:
* If we are interested only in parametric part: Semi-parametric
* If we are interested in both: Semi-nonparametric



Main Goals

* |dentification: If we new “population distribution” D(6,) then can we
pin-point 6,7

» Estimation: Devise an algorithm that outputs an estimate 8,, of 6,
when having n samples



Estimator Properties of Interest

* Finite Sample Properties of Estimators:
* Bias = E[én] — 0, =07?
* Variance: Var(8,,) ?

* Mean-Squared-Error (MSE): E [(én — 90)2] = Variance + Bias?

e Large Sample Properties: n = o
» Consistency: 8,, = 6,°?
* Asymptotic Normality: an(én — 90) - N(0,V)?
e \/n-consistency: a,, =+n?

* Efficiency: is limit variance V information theoretically optimal? (typically
achieved by MLE estimator)



General Classes of Estimators

* Extremum Estimator
6y = argmaxgeg 0n(0)
* Examples
* MLE: Qu(8) = =37, In f (2 6)
* GMM Estimator: suppose in population E[m(z,8)] = 0. Empirical analogue:

for some W positive definite ,

1 | _1 |
0n(6) = |~ ) m(z,0)| W |= > m(z,6)




Consistency of Extremum Estimators

Consistency Theorem. If there is a function Q,(8) s.t.:
1. Qy(8) is uniquely maximized at 6,
2. Qy(0) is continuous

3. Qn(0) converges uniformly in probability to Q,(8), i.e. sup|Q,(8) — Qo(8)| =, 0
6
Then 6 -, 0

1 0n(8) = 3, 9(2:,6) and Qo(6) = E[g(z 0)], then (2.,3.) wil be
satisfied if
* g(z,0) is continuous
* g(z,0) < d(2) with E[d(2)] < «

* Typically referred to as “regularity conditions”



Asymptotic Normality

* Under “regularity conditions” asymptotic normality of extremum estimators follows by
ULLN, CLT, Slutzky thm and consistency

* Roughly: consider case Q,,(6) = %Zig(zi, 0)

e Take first order condition

In practice, typically variance is
computed via Bootstrap [Efron’79]:

1 ~
— Z Veg(Zi» 9) =0 Re-sample from your samples with
n - replacement and compute empirical

* Linearize around 6, by mean value theorem varlance

1 1 |, A
Ez Vog(z; 00) + EZ Voo (2, 8)| (8 - 6,) = 0
i i
* Re-arrange:

~1
~ 1 _ 1
vn(d —6,) = Ez Voo d(zi, 9)] \/_ﬁz Vog(zi, 6) —q N(0,U)
[ | | [

\ J

Y |
—)p E[VQQQ(Z, 90)] —d N (0; Var(Veg(Zr 90)))



Econometric Theory for Games



Econometric Theory for Games

* /; are observable quantities from a game being played
* 8: unobserved parameters of the game

e Address identification and estimation in a variety of game theoretic
models assuming players are playing according to some equilibrium

notion



Why useful?

* Scientific: economically meaningful quantities

* Perform counter-factual analysis: what would happen if we
change the game?

* Performance measures: welfare, revenue

* Testing game-theoretic models: if theory on estimated
qguantities predicts different behavior, then in trouble



Outline of the rest of the talk

 Complete information games
* Multiplicity of equilibria: partial identification and set inference

* Discrete Static and Dynamic Games of Incomplete Information
* Two-stage estimators

* Auction games
* |dentification and estimation in first price auctions with independent private
values
* Algorithmic game theory and econometrics
* Mechanism design for data science
* Econometrics for learning agents



A Seminal Example
Entry Games [Bresnahan-Reiss’90,91] and [Berry’92]



Entry Game

* Two firms deciding whether to enter a market
* Entry decision y; € {0,1}

* Profits from entry:
T =X f1+Yy:0; + €
Ty, =X P2+ Y10, +6€;

e Equilibrium:
y; = 1{m; = 0}

* €; ~ F;: at each market i.i.d. from known distribution
e x: observable characteristics of each market
* (3;,0;: constants across markets



Assume 01,0, < 0 | m=xp+no+e

Ty =X B2+ Y102 + €
[Bresnahan-Reiss’90,91], [Berry’92]
€2

01 Player 1 enters only in monopoly
( , ) €1 < —(B1,x1) — & (1'1)
Player 2 always enters

Both players always enter
€2 = —(B2,x2) — &

€1 = —(B1,x1) — 6,
€2 = —(B2,x3) — 6,
@ €1
(—(B1, x1) — 81, —{B2, x2) — &2)

Player 1 never enters

€1 < —(B1,x1)
Player 2 enters only in monopoly (0,1) or (1,0)
—(B2,x%2) < €3 < —(B2,x2) — &7

4
(=(B1, x1), —(B2, x2)) (1,0)
(0,0)

* In all regions: equilibrium number of entrants N = y; + y, is unique
e Can perform MLE estimation using N as observation



Identified set ©;: 3, 0 s.t.:

P11 = Pr _Rl_
More generally Poo = PrlR;]
Tamer'03] [Cillberto-Tamer /0] Pr[R;] < Py; < Pr| |+ Pr|[R;3]
amer illiberto-Tamer ‘. PI‘[R4,] < P,y < PI':R3: n PI‘[R4]
(0,1) (1,1)
Ry
4 €1
(0,1) or (1,0)
Rs Ry
L
0.0) (1,0)

* Equilibrium will be some selection of possible equilibria S(¢)
* Imposes inequalities on probability of each action profile



Estimating the Identified set

[Cilliberto-Tamer’09]
0, = {B,6: P11 = Pr|Rq], Py = Pr[Rs],
PI'[RZ] < P()1 < Pr[Rz] + Pr[R3] )
Pr[R,] < P;y < Pr|R3] + Pr[R,]}
* Distribution of € known: Pr[R;]| some known function G;(X; 5, §) of parameters
* y1,V2,X:0bserved in the data

Py

* Replace population probabilities with empirical: Py, y x = P, 5 x
* Add slack to allow for error in empirical estimates:

P

1%
Py y.x < G2(X;B,6) + G3(X; B, 6) .|_7”

where v,, - ® and = - 0 (asymptotic properties [Chernozukhov-Hong-Tamer’07])
n n



General Games

yisan
equilibri o
um - y'"is an
y 15an  equilibri
6 equilibri um

um

y'"isan

equilibri
um

Q: probability space where unobserved randomness lives (e.g. €)

* Each 0 defines the set of equilibria for each w € ()

* One of these equilibria will be selected

* We only observe distribution of outcomes y: Pr[y = k] for each possible equilibrium k

* |s 8 admissible for a given population of outcomes?



Characterization of the Identified Set

[Beresteanu-Molchanov-Mollinari’09]

Theorem [Artsein’83, Beresteanu-Molchanov-Mollinari’07]. Let Z4 be a random
set in 2% and let yg be a random variable in K. Then yy is a selection of Zy (i.e.

Yo € Zg a.s.) if and only if:
VS C K: Prlyg € S| < Pr[Zg NS + @]

In games:

* K is the set of possible equilibria of a game

* Zy is the set of equilibria for a given realization of the unobserved ¢,
* Pr[yg € S]: population distribution of action profiles

* Thus: ©; = {6:VS € K,Pr[yg € S] < Pr[Zy NS + @]}

* Defined as a set of moment inequalities



Characterization of the Identified Set

[Beresteanu-Molchanov-Mollinari’09]

Theorem [Artsein’83, Beresteanu-Molchanov-Mollinari’07]. Let Z4 be a random
set in 2% and let yg be a random variable in K. Then yy is a selection of Zy (i.e.

Yo € Zg a.s.) if and only if:
VS C K: Prlyg € S| < Pr[Zg NS + @]

* For the example latter is equivalent to ©; of [Cilliberto-Tamer’09]
* For more general settings it is strictly smaller and sharp

e Can perform estimation based on moment inequalities similar to [CT’09]

~ ~ 14
®I = {Hp[yg € S] < PF[ZQ nS] +7n}

%
where v,, — ooandf - 0



Main take-aways

 Games of complete information are typically partially identified

* Multiplicity of equilibrium is the main issue

* Leads to set-estimation strategies and machinery [Chernozhukov et
al’09]

* Very interesting random set theory for estimating the sharp
identifying set



Incomplete Information Games and

Two-Stage Estimators

Static Games: [Bajari-Hong-Krainer-Nekipelov’12]

Dynamlc Games: [Bajari-Benkard-Levin’07], [Pakes-Ostrovsky-

Berry’ 07{ &Agwrregablrla Mira’07], [Ackerber% Benkard-Berry-
Pakes’07], [Bajari-Hong- Chernozhukov Nekipelov’'09]



High level idea

e At equilibrium agents have beliefs about other players actions and
best respond

* If econometrician observes the same information about opponents as
the player does then:
* Estimate these beliefs from the data in first stage

* Use best-response inequalities to these estimated beliefs in the second stage
and infer parameters of utility



Static Entry Game with Private Shocks

* Two firms deciding whether to enter a market
* Entry decision y; € {0,1}

* Profits from entry:
T =X 1 +Y20; + €4
Ty =X [ +Y102 + €

* ¢; ~ F;: at each market i.i.d. from known distribution and private to
player

e x: observable characteristics of each market
* [5;, 0;: constants across markets



Static Entry Game with Private Shocks

* Firms best-respond only in expectation

* Expected profits from entry:
[l =x- By +Prly, = 1x] 6, + &
[, =x-0, +Prly; =1|x] 6, + €,

* Let 0;(x) = Pr[y; = 1|x]
* Then:

o1(x) = Pr[x - p; + 0,(x)8; + €1 > 0]
0,(x) = Pr[x - B, + 01(x)6, + €, > 0]



Static Entry Game with Private Shocks

If €; is distributed according to an extreme value distribution:
01(x) < exp[x - By + 02(x)d4]
0, (x) o< exp[x - B, + 01(x) 8]

* Non-linear system of simultaneous equations

Computing fixed point is computationally heavy and fixed-point might not be
unique

Idea [Hotz-Miller’93, Bajari-Benkard-Levin’07, Pakes-Ostrovsky-Berry’07,
Aguirregabiria-Mira’07, Bajari-Hong-Chernozhukov-Nekipelov’09]: Use a two
stage estimator

1. Compute non-parametric estimate & (x) of function a;(x) from data

2. Run parametric regressions for each agent individually from the condition that:
0;(x) x exp[x - B; + 6_;(x) &;]
3. The latter is a simple logistic regression for each player to estimate £;, §;



Simple case: finite discrete states

If there are d states, then o; are d-dimensional parameter vectors

Easy v/n-consistent first-stage estimators § = (64, 6,) of 0 = (04, 0), i.e.:
Vn(6; —a) » N(0,V)
Suppose for second stage we do generalized method of moment estimator:
* Let O = (By,B2,61,6;) and 6y = (By, B2, 62, 6)
o Lety, = (Y11, Vo) and I'(x, 0,0) = (Fl(x, g,0),I,(x, 0o, 9)) with I;(x,0,0) =
* Then second stage estimator 6 is the solution to:

=N G - (e~ T(x0,6,8)) = 0
t=1

Does first stage error affect second stage variance and how?

ex-ﬁi+0'_i6

1+ex-ﬁi+0'_i6

This is a general question about two stage estimators



Two-Stage GMM with v/n-Consistent First

Sta ge [Newey-McFadden’94: Large Sample Estimation and Hypothesis Testing]

* Run a first step estimator & of g, withyn (6 — o) —» N(0,V)

* Second stage is a GMM estimator based on moment conditions E[m(z, 8,0)] = 0, i.e. 6 satisfies:
Em(zt,e a) =0

* Linearize around 6:

i 1-1
\/ﬁ(é—Q) _ lzam(Zug,O’) -\/%Zm(zt,e,&)
| t=1

n a0

| t=1

* Now the second term can be Iinearized around o:

zm(zt,e G) = Zm(zt,é? o)+ — z am(?j’ .0) -/n(6 — o)




Continuous State Space: x € R¢

[Bajari-Hong-Kranier-Nekipelov’12]

* Then there is no y/n-consistent first stage non-parametric estimator 6(+)
for function o(-) = E[y|x]

« Remarkably: still \/nn-consistency for second stage estimate 61!

* For instance:
* Kernel estimator for the first stage (tune bandwidth, “undersmoothing”)
* GMM for second stage

* Intuition (my rough take on it):
Kernel estimators have tunable “bias”-"variance” tradeoffs
Close to true 0: first stage bias alnd variance affect linearly second stage estimate

If variance and bias clzlecay at n 2 rates wg

_ _1 . . For detailed exposition see:
Requires at least n 4-consistency of first « [Newey94, Ai-Chen’03]

Typically we, have wiggle room to get var * Section 8.3 of survey of [Newey-McFadden’94]

decay at n 2 rate (e.g. decrease the banc * Han Hong’s Lecture notes on semi-parametric
efficiency [ECO276 Stanford]




Dynamic Games

* Similar ideas extend to dynamic games with discounted payoffs

Discrete state space s; € §, private shock space ¢€; € V;, discrete or continuous
actions A4, ..., Ay

Steady state and at Markov-Perfect-Equilibria: mapping from states and shocks to
actions.

Vi(s;0,0) = E[Z%;o Bt (o(se,ve), St €it) |50 =5 9]

Action specific i.i.d. profit shock and m; is additively separable:
m;(a,s, €) = fi(a,s) + €;(a;)

Define v;(a;, s): “shockless” discounted expected equilibrium payoff.

Player chooses action q; if:
vi(a;,s) +€;(a;) = v;(a;,s) + €;(a;)



Dynamic Games: First Stage

[Bajari-Benkard-Levin’07]

* Suppose €; are extreme value and v;(0,s) = 0, then
log P;(a;i|s) — log P;(0|s) = v;(a;, s)

* Non-parametrically estimate P;(a;|s)

* Invert and get estimate ¥;(a;, )

* We have a non-parametric first-stage estimate of the policy function:
6;(s,€;) = argmax U;(a;, s) — €;(a;)
a;eA;

 Combine with non-parametric estimate of state transition probabilities

* Compute a non-parametric estimate of discounted payoff for each policy,
state, parameter tuple: V; (o, s; 0), by forward simulation



Dynamic Games: First Stage

[Bajari-Benkard-Levin’07]

* If payoff is linear in parameters:
n;i(a,s, €;;0) = W¥(a,s,e;) -0

 Then:
Vi(O',S; 0) = Wi(O',S) - 0

* Suffices to do only simulation for each (policy, state) pair and not for
each parameter, to get first stage estimates W; (g, s)



Dynamic Games: Second Stage

[Bajari-Benkard-Levin’07]

* We know by equilibrium:
g(i,s,0;;0) =V;(0,s;0) —V,(g/,0_;;0) =0

* Can use an extremum estimator:
* Definite a probability distribution over (player, state, deviation) triplets
 Compute expected gain from [deviation]_ under the latter distribution

Q(6) = E[min{g(i, s, d;;6),0}]
* By Equilibrium Q(8,) = 0 = mein Q(0)

* Do empirical analogue with estimate g: R
g(i,s,0/;0) =V(6,s;0) —Vi(o{,6_;;0)
coming from first stage estimates

* Two sources of error:
 Error of 6 and P(s’'|s, a) : \v/n-consistent, asymptotically normal, for discrete actions/states
e Simulation error: can be made arbitrarily small by taking as many sample paths as you want



Notable Literature

* [Pakes-Ostrovsky-Berry’07], [Aguirregabiria-Mira’07], [Ackerberg-
Benkard-Berry-Pakes’07], [Bajari-Hong-Chernozhukov-Nekipelov’09]

* Provide similar but alternative two stage estimation approaches for dynamic
games

* [BHCN’09] can handle continuous states and semi-parametric estimation

* All of them based on the inversion strategy proposed by [Hotz-Miller’93] for
estimating single agent MDPs



Main take-aways

e When econometrician’s information is the same as each individuals
(i.e. shocks are private to the players)

* Model can be viewed as fixed point of distribution over actions of
players over the unobserved heterogeneity

e Can apply two-stage simulation approaches to avoid solving the fixed-
point

* Data “designates” which equilibrium is selected
* Needs main assumption of “unique equilibrium in the data”



Auction Games:
|dentification and Estimation

FPA IPV: [Guerre-Perrigne-Vuong’00],

Beyond IPV: [Athey-Haile’02]

Partial Identification: [Haile-Tamer’03]

Comprehensive survey of structural estimation in auctions: [Paarsch-Hong’06]



First Price Auction: Non-Parametric
I d e ntifi Cat i O n [Guerre-Perrigne-Vuong’00]

 Sealed bid first price auction

* Symmetric bidders: value v; ~ F

* Observe all submitted bids

* Bids come from symmetric Bayes-Nash equilibrium

Non-parametric identification: Can we identify F' from the distribution
of bids G?



First Price Auction: Non-Parametric
I d e ntifi Cat i O n [Guerre-Perrigne-Vuong’00]

* At symmetric equilibrium s(-):

v = argmax(v — s(2))F"*"1(2)
Z
* First-order-condition:

(v=—s@)(n—Df@F*" %) =s'W)F*" 1(v) > v =s) + s WFQ©)

(n—=Df()

* By setting b = s(v):
G(b) = Pr|b < b] = Pr[¥ < s71(b)] = F(s™1(b))

sy fTHD)
g(b) - F(S (b)) - S’(S_l(b))
e Change variables v = s~1(b) in FOC:
G(b)

s Y (b)) =b +

(n—1)g(b)



First Price Auction: Non-Parametric
I d e ntifi Cat i O n [Guerre-Perrigne-Vuong’00]

G(b)
(n—1)g(b)

hidden valuev = s~ 1(b) = b + = &(b,G)

e If G strictly increasing continuous and with continuous density then:

F) = 6(£ (1, 6))

* I can be identified when having access to G!



First Price Auction: Non-Parametric
E Sti m at i O n [Guerre-Perrigne-Vuong’00]

 Sequence of bid samples from each player {(Bit)’i\':l}?:l
* Estimate G and g non-parametrically via standard approaches

* G is empirical CDF: )

— N-Z 1(By < b)
i,
g is a kernel-based estimator:
g} =N — h, h,
i,

* K is any density function with zero moments up to m and bounded m-
th moment

G(b) =




First Price Auction: Non-Parametric
E Sti m at i O n [Guerre-Perrigne-Vuong’00]

» Given G and § we can now find the pseudo-inverse value of the player
* Use empirical version of identification formula

G(Blt)
Vie = By +
* (n o 1) g(Blt)
* Similarly define second-stage estlmators of F and f:**

F(V) = it < v}

f) =- i (“ )

** Need some modifications if one wants unbiasedness




Uniform Rates of Convergence

* Suppose f has uniformly bounded continuous first derivative

-1/3
* If we observed values then uniform convergence rate of (10;(71))

* From classic results in non-parametric regression [Stone’82]

* Now that onlly bids are observed, [GPV'00] show that best achievable

[ n \s
> (log<n>)

* The density f depends on the derivative of g




What if only winning bid is observed?

* For instance in a Dutch auction
* CDF of winning bid is simply: .
Gw(b) = G(L)N = G(b) = (G (b))V

* Hence, densities are related as:

1 14
g(b) = Ngw(b)(GW(b))N

* Thus G and g are identified from Gy, and gy,
* Hence, can apply previous argument and identify F and f



What if only winning bid is observed?

 Alternatively, we can identify value of winner as: (bi)
1  G(by) N Gw(by

vy = by + = bw +
W I N—1gbyw) " N —1gy(by)

* Thus we can identify distribution of highest value Fy, and f,

* Subsequently, use F(v) = (FW(U))% and f(v) =
%fw(v)(FW(v))ﬁ_1 to identify F and f

* This also gives an estimation strategy (two-stage estimator, similar to
case when all bids observed)



Notable Literature

e [Athey-Haile’02]
* |dentification in more complex than independent private values setting.
* Primarily second price and ascending auctions
* Mostly, winning price and bidder is observed
* Most results in IPV or Common Value model

* [Haile-Tamer’03]
* Incomplete data and partial identification
* Prime example: ascending auction with large bid increments

* Provides upper and lower bounds on the value distribution from necessary
equilibrium conditions

e [Paarsch-Hong’06]

* Complete treatment of structural estimation in auctions and literature review
* Mostly presented in the IPV model



Main Take-Aways

* Closed form solutions of equilibrium bid functions in auctions

* Allows for non-parametric identification of unobserved value
distribution

* Easy two-stage estimation strategy (similar to discrete incomplete
information games)

e Estimation and Identification robust to what information is observed
(winning bid, winning price)

* Typically rates for estimating density of value distribution are very
slow



Algorithmic Game Theory and
Econometrics

Mechanism Design for Inference
Econometrics for Learning Agents



Mechanism Design for Data Science

[Chawla-Hartline-Nekipelov’14]

e Aim to identify a class of auctions such that:
* By observing bids from the equilibrium of one auction
* Inference on the equilibrium revenue on any other auction in the class is easy
 Class contains auctions with high revenue as compared to optimal auction

* Class analyzed: Rank-Based Auctions
* Position auction with weights w; = - > wy = wpy1 =0
Bidders are allocated randomly to positions based only the relative rank of their bid
k-th highest bidder gets allocation x;,
Pays first price: x; by,
Feasibility: Y'7_, x; < i, w;

* For “regular” distributions, best rank-based auction is 2-approx. to optimal



Optimizing over Rank-Based Auctions

[Chawla-Hartline-Nekipelov’14]

* Every rank-based auction can be viewed as a hew position auction
with weights: w; satisfying X7_, w; < X7_, w;

* Thus auctioneer’s optimization is over such modifications to the
setting

* Each of these auctions is equivalent to running a mixture of k-unit
auctions, where k-th unit auction run w.p. pr, = Wy — W41

 To calculate revenue of any rank based auction, suffices to calculate
expected revenue R, of each k-th unit auction

Main question. Estimation rates of quantity R, when observing bids
from a given rank-based auction



Estimation analysis

[Chawla-Hartline-Nekipelov’14]

e Similar to the FPA equilibrium characterization used by [GPV’00]
* As always, write everything in quantile space

* With a twist: g = F(v)

* At symmetric equilibrium s(-):
b(q) = argmax(v(q) — 2)x(b~1(2))

* FOC:

B b'(q)x(q)
v(q) = b(q) + (D)

* x(q) and x'(q) are known from the rules of the auction




Estimation

[Chawla-Hartline-Nekipelov’14]

* Need to estimate b(q) and b'(q) if we want to estimate v(q)
 Compared to [GPV’00]:
* v(q) = F'(q)
° — -1 ! — L
b(CI) G (CI), b (CI) g(G“l(q))
* Estimating v(q), b(q), b'(q) the same as estimating F, G, g

* Main message. The quantity R, for any k depends only on b(q) and
not on b'(q)! Leads to much faster rates.



Fast Convergence for Counterfactual
Reve n u e [Chawla-Hartline-Nekipelov’14]

* The per agent revenue of a k-unit auction can be written as:

E[R(q)xx(q)]
R(q) = v(q)(1 — q): single buyer revenue from price v(q)
X (q): probability player with quantile g is among k-highest

_ b'(q)x(q)
Remember v(q) = b(q) + @)

Dependence on b'(q) is of the form:
x(q9)(1 - q)x,(q

x'(q)

Integrating by parts:
E

b(a) (x(q)(lx —( ;))xk@) ]

which depends only on b(q) and on “exactly” known quantities

Yields O (\/iﬁ) convergence®* of

MSE, since b(q) is essentially a
CDF inverted

*Exact convergence depends
inversely on x'(q)

Need to restrict to rank-based
auctions where x'(q) > € (e.g.
mixing each k-unit auction with

probability € /n)




Take-away points

[Chawla-Hartline-Nekipelov’14]

* By isolating mechanism design to rank based auctions, we achieve:
* Constant approximation to the optimal revenue within the class

e Estimation rates of revenue of each auction in the class of O(W)

* Allows for easy adaptation of mechanism to past history of bids

* [Chawla et al. EC’16]: allows for A/B testing among auctions and for a
universal B test! (+improved rates)



Econometrics for Learning Agents

[Nekipelov-Syrgkanis-Tardos’15]

* Analyze repeated strategic interactions

* Finite horizont € {1, ..., T}

* Players are learning over time

* Unlike stationary equilibrium, or stationary MPE, or static game

* Use no-regret notion of learning behavior:

Va{: 2 ni(af, aii; 0) = z ni(alf, afi; 9) — €

t t



High-level approach

[Nekipelov-Syrgkanis-Tardos’15]
[f we assume € regret

1 . 1 ;4
For all a;: TE m;(a*; 0) > TE ni(ai, a_;; 9) — €
t

t

\ ]\ J |\ )
| | |

Current average utility  Average deviating utility Regret
from fixed action

EA e e e e e e e e e e e e e

...............................................................

* Inequalities that unobserved @ must satisfy ~rationalizable set

72 . R R

e Varying € we get the rationalizable set

of parameters




Application: Online Ad Auction setting

[Nekipelov-Syrgkanis-Tardos’15]

* Each player has value-per-click v; ’ e

* Bidders ranked according to a scoring rule e DR

* Number of clicks and cost depends on = B f
position —

* Quasi-linear utility i .

Value-Per-Click Expected Payment

e i
m;(b;v;) = v; - x;(b) — p;(b)
—

Expected click probability



Main Take-Aways of Econometric Approach

[Nekipelov-Syrgkanis-Tardos’15]

 Rationalizable set is convex

. ?upport function representation of convex set depends on a one dimensional
unction

* Can apply one-dimensional non-parametric regression rates
* Avoids complicated set-inference approaches

Comparison with prior econometric approaches:
Behavioral learning model computable in poly-time by players

Models error in decision making as unknown parameter rather than profit shock
with known distribution

Much simpler estimation approach than prior repeated game results
Can handle non-stationary behavior



Potential Points of Interaction with
Econometric Theory

 Inference for objectives (e.g. welfare, revenue, etc.) + combine with
approximation bounds (see e.g. Chawla et al’14-16, Hoy et al.’15, Liu-
Nekipelov-Park’16,Coey et al.16)

 Computational complexity of proposed econometric methods,
computationally efficient alternative estimation approaches

* Game structures that we have studied exhaustively in theory (routing
games, simple auctions)

 Game models with combinatorial flavor (e.g. combinatorial auctions)

 Computational learning theory and online learning theory techniques for
econometrics

* Finite sample estimation error analysis



AGT+Data Science

* Large scale mechanism design and game theoretic analysis needs to
be data-driven

* Learning good mechanisms from data

* Inferring game properties from data

* Designing mechanisms for good inference

* Testing our game theoretic models in practice (e.g. Nisan-Noti’16)
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