AGT and Data Science

Jamie Morgenstern, University of Pennsylvania Vasilis Syrgkanis, Microsoft Research

AGT and Data Science Part 2

Econometric Theory for Games

Vasilis Syrgkanis, Microsoft Research

Comparison with Part (1)

- Optimization vs Estimation
 - Part 1: find revenue maximizing mechanism from data
 - Part 2: interested in inference of private parameters of structural model
- Truthful vs Strategic Data
 - Part 1: data set were i.i.d. samples of player valuations
 - Part 2: data are observed outcomes of strategic interaction (e.g. bids in FPA)
- Technical Exposition vs Overview
 - Part 1: in-depth exposition of basic tools
 - Part 2: overview of econometric theory for games literature with some in-depth drill downs

A Primer on Econometric Theory

Basic Tools and Terminology

Econometric Theory

- Given a sequence of i.i.d. data points Z_1, \dots, Z_n
- Each Z_i is the outcome of some structural model $Z_i \sim D(\theta_0)$, with $\theta_0 \in \Theta$

- Parameter space Θ can be:
 - Finite dimensional (e.g. \mathbb{R}^d): parametric model
 - Infinite dimensional (e.g. function): non-parametric model
 - Mixture of finite and infinite:
 - If we are interested only in parametric part: Semi-parametric
 - If we are interested in both: Semi-nonparametric

Main Goals

• Identification: If we new "population distribution" $D(\theta_0)$ then can we pin-point θ_0 ?

• Estimation: Devise an algorithm that outputs an estimate $\hat{\theta}_n$ of θ_0 when having n samples

Estimator Properties of Interest

- Finite Sample Properties of Estimators:
 - Bias = $E[\hat{\theta}_n] \theta_0 = 0$?
 - Variance: $Var(\hat{\theta}_n)$?
 - Mean-Squared-Error (MSE): $E\left[\left(\hat{\theta}_n \theta_0\right)^2\right] = Variance + Bias^2$
- Large Sample Properties: $n \to \infty$
 - Consistency: $\hat{\theta}_n \rightarrow \theta_0$?
 - Asymptotic Normality: $a_n(\hat{\theta}_n \theta_0) \rightarrow N(0, V)$?
 - \sqrt{n} -consistency: $a_n = \sqrt{n}$?
 - Efficiency: is limit variance *V* information theoretically optimal? (typically achieved by MLE estimator)

General Classes of Estimators

Extremum Estimator

$$\theta_0 = \operatorname{argmax}_{\theta \in \Theta} Q_n(\theta)$$

- Examples
 - MLE: $Q_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ln f(z_i; \theta)$
 - GMM Estimator: suppose in population $E[m(z,\theta)]=0$. Empirical analogue: for some W positive definite

$$Q_n(\theta) = \left[\frac{1}{n}\sum_{i} m(z_i, \theta)\right]' W \left[\frac{1}{n}\sum_{i} m(z_i, \theta)\right]$$

Consistency of Extremum Estimators

Consistency Theorem. If there is a function $Q_0(\theta)$ s.t.:

- 1. $Q_0(\theta)$ is uniquely maximized at θ_0
- 2. $Q_0(\theta)$ is continuous
- 3. $Q_n(\theta)$ converges uniformly in probability to $Q_0(\theta)$, i.e. $\sup_{\theta} |Q_n(\theta) Q_0(\theta)| \to_p 0$

Then $\hat{\theta} \rightarrow_p \theta_0$

- If $Q_n(\theta)=\frac{1}{n}\sum_i g(z_i,\theta)$ and $Q_0(\theta)=E[g(z,\theta)]$, then (2.,3.) will be satisfied if
 - $g(z, \theta)$ is continuous
 - $g(z, \theta) \le d(z)$ with $E[d(z)] \le \infty$
- Typically referred to as "regularity conditions"

Asymptotic Normality

- Under "regularity conditions" asymptotic normality of extremum estimators follows by ULLN, CLT, Slutzky thm and consistency
- Roughly: consider case $Q_n(\theta) = \frac{1}{n} \sum_i g(z_i, \theta)$
 - Take first order condition

$$\frac{1}{n}\sum_{i}\nabla_{\theta}g(z_{i},\widehat{\theta})=0$$

• Linearize around θ_0 by mean value theorem

$$\frac{1}{n} \sum_{i} \nabla_{\theta} g(z_{i}, \theta_{0}) + \left| \frac{1}{n} \sum_{i} \nabla_{\theta \theta} g(z_{i}, \bar{\theta}) \right| (\hat{\theta} - \theta_{0}) = 0$$

• Re-arrange:

$$\sqrt{n}(\hat{\theta} - \theta_0) = \left[\frac{1}{n} \sum_{i} \nabla_{\theta\theta} g(z_i, \bar{\theta})\right]^{-1} \cdot \frac{1}{\sqrt{n}} \sum_{i} \nabla_{\theta} g(z_i, \theta_0) \rightarrow_d N(0, U)$$

$$\rightarrow_p E[\nabla_{\theta\theta} g(z, \theta_0)] \rightarrow_d N\left(0, Var(\nabla_{\theta} g(z, \theta_0))\right)$$

In practice, typically variance is

computed via Bootstrap [Efron'79]:

Re-sample from your samples with

replacement and compute empirical

variance

Econometric Theory for Games

Econometric Theory for Games

- Z_i are observable quantities from a game being played
- θ_0 : unobserved parameters of the game

 Address identification and estimation in a variety of game theoretic models assuming players are playing according to some equilibrium notion

Why useful?

- Scientific: economically meaningful quantities
- Perform counter-factual analysis: what would happen if we change the game?
- Performance measures: welfare, revenue
- Testing game-theoretic models: if theory on estimated quantities predicts different behavior, then in trouble

Outline of the rest of the talk

- Complete information games
 - Multiplicity of equilibria: partial identification and set inference
- Discrete Static and Dynamic Games of Incomplete Information
 - Two-stage estimators
- Auction games
 - Identification and estimation in first price auctions with independent private values
- Algorithmic game theory and econometrics
 - Mechanism design for data science
 - Econometrics for learning agents

A Seminal Example

Entry Games [Bresnahan-Reiss'90,91] and [Berry'92]

Entry Game

- Two firms deciding whether to enter a market
- Entry decision $y_i \in \{0,1\}$
- Profits from entry:

$$\pi_1 = x \cdot \beta_1 + y_2 \delta_1 + \epsilon_1$$

$$\pi_2 = x \cdot \beta_2 + y_1 \delta_2 + \epsilon_2$$

• Equilibrium:

$$y_i = 1\{\pi_i \ge 0\}$$

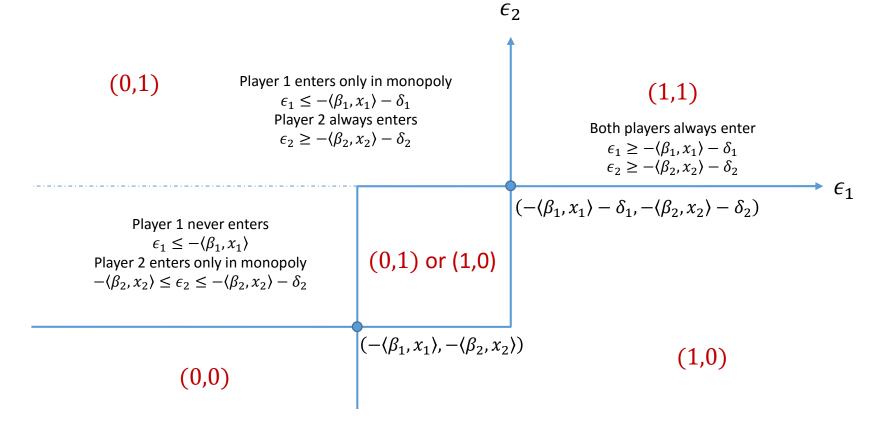
- $\epsilon_i \sim F_i$: at each market i.i.d. from known distribution
- x: observable characteristics of each market
- β_i , δ_i : constants across markets

Assume δ_1 , $\delta_2 < 0$

[Bresnahan-Reiss'90,91], [Berry'92]

$$\pi_1 = x \cdot \beta_1 + y_2 \delta_1 + \epsilon_1$$

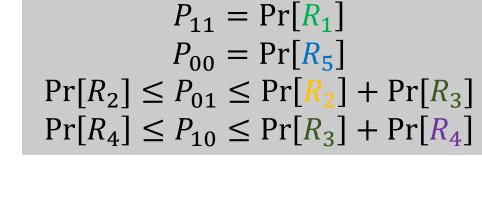
$$\pi_2 = x \cdot \beta_2 + y_1 \delta_2 + \epsilon_2$$



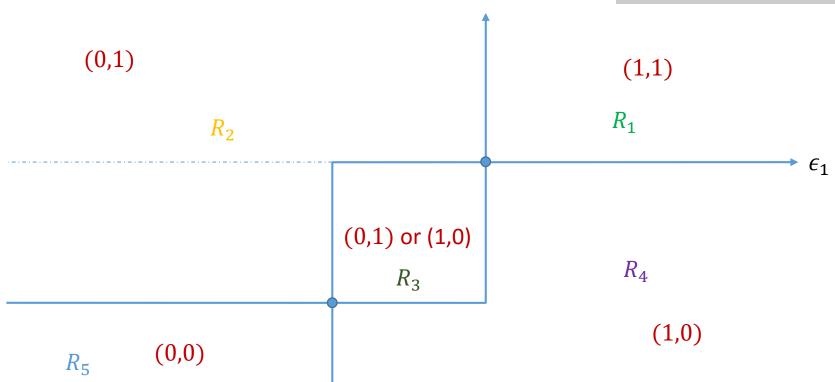
- In all regions: equilibrium number of entrants $N=y_1+y_2$ is unique
- Can perform MLE estimation using N as observation

More generally

[Tamer'03] [Cilliberto-Tamer'09]



Identified set Θ_I : β , δ s.t.:



 ϵ_2

- Equilibrium will be some selection of possible equilibria $S(\epsilon)$
- Imposes inequalities on probability of each action profile

Estimating the Identified set

[Cilliberto-Tamer'09]

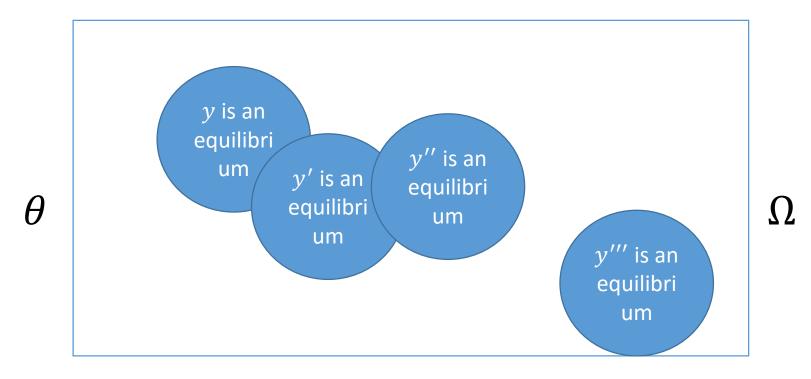
$$\Theta_I = \{\beta, \delta : P_{11} = \Pr[R_1], P_{00} = \Pr[R_5], \\ \Pr[R_2] \le P_{01} \le \Pr[R_2] + \Pr[R_3], \\ \Pr[R_4] \le P_{10} \le \Pr[R_3] + \Pr[R_4] \}$$

- Distribution of ϵ known: $\Pr[R_i]$ some known function $G_i(X; \beta, \delta)$ of parameters
- y_1, y_2, X : observed in the data
- Replace population probabilities with empirical: $P_{y_1y_2X} \to \hat{P}_{y_1y_2X}$
- Add slack to allow for error in empirical estimates:

$$\widehat{P}_{y_1,y_2X} \le G_2(X;\beta,\delta) + G_3(X;\beta,\delta) + \frac{\nu_n}{n}$$

where $v_n \to \infty$ and $\frac{v_n}{n} \to 0$ (asymptotic properties [Chernozukhov-Hong-Tamer'07])

General Games



- Ω : probability space where unobserved randomness lives (e.g. ϵ)
- Each θ defines the set of equilibria for each $\omega \in \Omega$
- One of these equilibria will be selected
- We only observe distribution of outcomes y: Pr[y=k] for each possible equilibrium k
- Is θ admissible for a given population of outcomes?

Characterization of the Identified Set

[Beresteanu-Molchanov-Mollinari'09]

Theorem [Artsein'83, Beresteanu-Molchanov-Mollinari'07]. Let Z_{θ} be a random set in 2^K and let y_{θ} be a random variable in K. Then y_{θ} is a selection of Z_{θ} (i.e. $y_{\theta} \in Z_{\theta}$ a.s.) if and only if:

$$\forall S \subseteq K \colon \Pr[y_{\theta} \in S] \leq \Pr[Z_{\theta} \cap S \neq \emptyset]$$

In games:

- K is the set of possible equilibria of a game
- Z_{θ} is the set of equilibria for a given realization of the unobserved ϵ ,
- $\Pr[y_{\theta} \in S]$: population distribution of action profiles
- Thus: $\Theta_I = \{\theta : \forall S \subseteq K, \Pr[y_\theta \in S] \leq \Pr[Z_\theta \cap S \neq \emptyset]\}$
- Defined as a set of moment inequalities

Characterization of the Identified Set

[Beresteanu-Molchanov-Mollinari'09]

Theorem [Artsein'83, Beresteanu-Molchanov-Mollinari'07]. Let Z_{θ} be a random set in 2^K and let y_{θ} be a random variable in K. Then y_{θ} is a selection of Z_{θ} (i.e. $y_{\theta} \in Z_{\theta}$ a.s.) if and only if:

$$\forall S \subseteq K \colon \Pr[y_{\theta} \in S] \leq \Pr[Z_{\theta} \cap S \neq \emptyset]$$

- For the example latter is equivalent to Θ_I of [Cilliberto-Tamer'09]
- For more general settings it is strictly smaller and sharp
- Can perform estimation based on moment inequalities similar to [CT'09]

$$\widehat{\Theta}_I = \left\{ \theta : \widehat{P}[y_\theta \in S] \le \Pr[Z_\theta \cap S] + \frac{\nu_n}{n} \right\}$$

where $\nu_n \to \infty$ and $\frac{\nu_n}{n} \to 0$

Main take-aways

- Games of complete information are typically partially identified
- Multiplicity of equilibrium is the main issue
- Leads to set-estimation strategies and machinery [Chernozhukov et al'09]
- Very interesting random set theory for estimating the sharp identifying set

Incomplete Information Games and Two-Stage Estimators

Static Games: [Bajari-Hong-Krainer-Nekipelov'12]

Dynamic Games: [Bajari-Benkard-Levin'07], [Pakes-Ostrovsky-Berry'07], [Aguirregabiria-Mira'07], [Ackerberg-Benkard-Berry-Pakes'07], [Bajari-Hong-Chernozhukov-Nekipelov'09]

High level idea

 At equilibrium agents have beliefs about other players actions and best respond

- If econometrician observes the same information about opponents as the player does then:
 - Estimate these beliefs from the data in first stage
 - Use best-response inequalities to these estimated beliefs in the second stage and infer parameters of utility

Static Entry Game with Private Shocks

- Two firms deciding whether to enter a market
- Entry decision $y_i \in \{0,1\}$
- Profits from entry:

$$\pi_1 = x \cdot \beta_1 + y_2 \delta_1 + \epsilon_1$$

$$\pi_2 = x \cdot \beta_2 + y_1 \delta_2 + \epsilon_2$$

- $\epsilon_i \sim F_i$: at each market i.i.d. from known distribution and private to player
- x: observable characteristics of each market
- β_i , δ_i : constants across markets

Static Entry Game with Private Shocks

- Firms best-respond only in expectation
- Expected profits from entry:

$$\Pi_{1} = x \cdot \beta_{1} + \Pr[y_{2} = 1 | x] \delta_{1} + \epsilon_{1}$$

$$\Pi_{2} = x \cdot \beta_{2} + \Pr[y_{1} = 1 | x] \delta_{2} + \epsilon_{2}$$

- Let $\sigma_i(x) = \Pr[y_i = 1 | x]$
- Then:

$$\sigma_1(x) = \Pr[x \cdot \beta_1 + \sigma_2(x)\delta_1 + \epsilon_1 > 0]$$

$$\sigma_2(x) = \Pr[x \cdot \beta_2 + \sigma_1(x)\delta_2 + \epsilon_2 > 0]$$

Static Entry Game with Private Shocks

• If ϵ_i is distributed according to an extreme value distribution:

$$\sigma_1(x) \propto \exp[x \cdot \beta_1 + \sigma_2(x)\delta_1]$$

 $\sigma_2(x) \propto \exp[x \cdot \beta_2 + \sigma_1(x)\delta_2]$

- Non-linear system of simultaneous equations
- Computing fixed point is computationally heavy and fixed-point might not be unique
- Idea [Hotz-Miller'93, Bajari-Benkard-Levin'07, Pakes-Ostrovsky-Berry'07, Aguirregabiria-Mira'07, Bajari-Hong-Chernozhukov-Nekipelov'09]: Use a two stage estimator
 - 1. Compute non-parametric estimate $\hat{\sigma}(x)$ of function $\sigma_i(x)$ from data
 - 2. Run parametric regressions for each agent individually from the condition that:

$$\sigma_i(x) \propto \exp[x \cdot \beta_i + \hat{\sigma}_{-i}(x) \delta_i]$$

3. The latter is a simple logistic regression for each player to estimate β_i , δ_i

Simple case: finite discrete states

- If there are d states, then σ_i are d-dimensional parameter vectors
- Easy \sqrt{n} -consistent first-stage estimators $\hat{\sigma}=(\hat{\sigma}_1,\hat{\sigma}_2)$ of $\sigma=(\sigma_1,\sigma_2)$, i.e.: $\sqrt{n}(\hat{\sigma}_i-\sigma)\to N(0,V)$
- Suppose for second stage we do generalized method of moment estimator:
 - Let $\hat{\theta} = (\hat{\beta}_1, \hat{\beta}_2, \hat{\delta}_1, \hat{\delta}_2)$ and $\theta_0 = (\beta_1, \beta_2, \delta_2, \delta_2)$
 - Let $y_t = (y_{1t}, y_{2t})$ and $\Gamma(x, \sigma, \theta) = (\Gamma_1(x, \sigma, \theta), \Gamma_2(x, \sigma, \theta))$ with $\Gamma_i(x, \sigma, \theta) = \frac{e^{x \cdot \beta_i + \sigma_{-i} \delta}}{1 + e^{x \cdot \beta_i + \sigma_{-i} \delta}}$
 - Then second stage estimator $\hat{\theta}$ is the solution to:

$$\frac{1}{n} \sum_{t=1}^{n} A(x_t) \cdot \left(y_t - \Gamma(x_t, \hat{\sigma}, \hat{\theta}) \right) = 0$$

- Does first stage error affect second stage variance and how?
- This is a general question about two stage estimators

Two-Stage GMM with \sqrt{n} -Consistent First

Stage [Newey-McFadden'94: Large Sample Estimation and Hypothesis Testing]

- Run a first step estimator $\hat{\sigma}$ of σ , with $\sqrt{n} (\hat{\sigma} \sigma) \rightarrow N(0, V)$
- Second stage is a GMM estimator based on moment conditions $E[m(z, \theta, \sigma)] = 0$, i.e. $\hat{\theta}$ satisfies:

$$\frac{1}{n}\sum_{t=1}^{n}m(z_{t},\hat{\theta},\hat{\sigma})=0$$

• Linearize around θ :

$$\sqrt{n}(\hat{\theta} - \theta) = -\left[\frac{1}{n}\sum_{t=1}^{n}\frac{\partial m(z_{t},\bar{\theta},\hat{\sigma})}{\partial \theta}\right]^{-1} \cdot \frac{1}{\sqrt{n}}\sum_{t=1}^{n}m(z_{t},\theta,\hat{\sigma})$$

• Now the second term can be linearized around σ :

$$\frac{1}{\sqrt{n}} \sum_{t=1}^{n} m(z_t, \theta, \hat{\sigma}) = \frac{1}{\sqrt{n}} \sum_{t=1}^{n} m(z_t, \theta, \sigma) + \frac{1}{n} \sum_{t=1}^{n} \frac{\partial m(z_t, \theta, \bar{\sigma})}{\partial \sigma} \cdot \sqrt{n} (\hat{\sigma} - \sigma)$$

Continuous State Space: $x \in \mathbb{R}^d$

[Bajari-Hong-Kranier-Nekipelov'12]

- Then there is no \sqrt{n} -consistent first stage non-parametric estimator $\hat{\sigma}(\cdot)$ for function $\sigma(\cdot)=E[y|x]$
- Remarkably: still \sqrt{n} -consistency for second stage estimate $\hat{\theta}$!!
- For instance:
 - Kernel estimator for the first stage (tune bandwidth, "undersmoothing")
 - GMM for second stage
- Intuition (my rough take on it):
 - Kernel estimators have tunable "bias"-"variance" tradeoffs
 - Close to true θ : first stage bias and variance affect linearly second stage estimate
 - If variance and bias decay at $n^{-\frac{1}{2}}$ rates we
 - Requires at least n^{-4} -consistency of first
 - Typically we have wiggle room to get var decay at $n^{-\frac{1}{2}}$ rate (e.g. decrease the band

For detailed exposition see:

- [Newey94, Ai-Chen'03]
- Section 8.3 of survey of [Newey-McFadden'94]
- Han Hong's Lecture notes on semi-parametric efficiency [ECO276 Stanford]

Dynamic Games

- Similar ideas extend to dynamic games with discounted payoffs
- Discrete state space $s_t \in S$, private shock space $\epsilon_i \in V_i$, discrete or continuous actions A_1, \dots, A_N
- Steady state and at Markov-Perfect-Equilibria: mapping from states and shocks to actions.

$$V_i(s; \sigma, \theta) = E\left[\sum_{t=0}^T \beta^t \pi_i(\sigma(s_t, \nu_t), s_t, \epsilon_{it}) \middle| s_0 = s; \theta\right]$$

• Action specific i.i.d. profit shock and π_i is additively separable:

$$\pi_i(a, s, \epsilon_i) = \tilde{\pi}_i(a, s) + \epsilon_i(a_i)$$

- Define $v_i(a_i, s)$: "shockless" discounted expected equilibrium payoff.
- Player chooses action a_i if:

$$v_i(a_i, s) + \epsilon_i(a_i) \ge v_i(a_i', s) + \epsilon_i(a_i')$$

Dynamic Games: First Stage

[Bajari-Benkard-Levin'07]

- Suppose ϵ_i are extreme value and $v_i(0,s)=0$, then $\log P_i(a_i|s) \log P_i(0|s) = v_i(a_i,s)$
- Non-parametrically estimate $\widehat{P}_i(a_i|s)$
- Invert and get estimate $\hat{v}_i(a_i, s)$
- We have a non-parametric first-stage estimate of the policy function:

$$\hat{\sigma}_i(s, \epsilon_i) = \operatorname*{argmax} \hat{v}_i(a_i, s) - \epsilon_i(a_i)$$

$$a_i \in A_i$$

- Combine with non-parametric estimate of state transition probabilities
- Compute a non-parametric estimate of discounted payoff for each policy, state, parameter tuple: $\hat{V}_i(\sigma, s; \theta)$, by forward simulation

Dynamic Games: First Stage

[Bajari-Benkard-Levin'07]

If payoff is linear in parameters:

$$\pi_i(a, s, \epsilon_i; \theta) = \Psi_i(a, s, \epsilon_i) \cdot \theta$$

• Then:

$$V_i(\sigma, s; \theta) = W_i(\sigma, s) \cdot \theta$$

• Suffices to do only simulation for each (policy, state) pair and not for each parameter, to get first stage estimates $\widehat{W}_i(\sigma, s)$

Dynamic Games: Second Stage

[Bajari-Benkard-Levin'07]

We know by equilibrium:

$$g(i, s, \sigma'_i; \theta) = V_i(\sigma, s; \theta) - V_i(\sigma'_i, \sigma_{-i}; \theta) \ge 0$$

- Can use an extremum estimator:
 - Definite a probability distribution over (player, state, deviation) triplets
 - Compute expected gain from [deviation]_ under the latter distribution $Q(\theta) = E[\min\{g(i, s, \sigma'_i; \theta), 0\}]$
 - By Equilibrium $Q(\theta_0) = 0 = \min_{\theta} Q(\theta)$
- Do empirical analogue with estimate \hat{g} :

$$\widehat{g}(i, s, \sigma_i'; \theta) = \widehat{V}_i(\widehat{\sigma}, s; \theta) - \widehat{V}_i(\sigma_i', \widehat{\sigma}_{-i}; \theta)$$

coming from first stage estimates

- Two sources of error:
 - Error of $\hat{\sigma}$ and $\hat{P}(s'|s,a)$: \sqrt{n} -consistent, asymptotically normal, for discrete actions/states
 - Simulation error: can be made arbitrarily small by taking as many sample paths as you want

Notable Literature

- [Pakes-Ostrovsky-Berry'07], [Aguirregabiria-Mira'07], [Ackerberg-Benkard-Berry-Pakes'07], [Bajari-Hong-Chernozhukov-Nekipelov'09]
 - Provide similar but alternative two stage estimation approaches for dynamic games
 - [BHCN'09] can handle continuous states and semi-parametric estimation
 - All of them based on the inversion strategy proposed by [Hotz-Miller'93] for estimating single agent MDPs

Main take-aways

- When econometrician's information is the same as each individuals (i.e. shocks are private to the players)
- Model can be viewed as fixed point of distribution over actions of players over the unobserved heterogeneity
- Can apply two-stage simulation approaches to avoid solving the fixedpoint
- Data "designates" which equilibrium is selected
- Needs main assumption of "unique equilibrium in the data"

Auction Games: Identification and Estimation

FPA IPV: [Guerre-Perrigne-Vuong'00],

Beyond IPV: [Athey-Haile'02]

Partial Identification: [Haile-Tamer'03]

Comprehensive survey of structural estimation in auctions: [Paarsch-Hong'06]

First Price Auction: Non-Parametric Identification [Guerre-Perrigne-Vuong'00]

- Sealed bid first price auction
- Symmetric bidders: value $v_i \sim F$
- Observe all submitted bids
- Bids come from symmetric Bayes-Nash equilibrium

Non-parametric identification: Can we identify F from the distribution of bids G?

First Price Auction: Non-Parametric Identification [Guerre-Perrigne-Vuong'00]

• At symmetric equilibrium $s(\cdot)$:

$$v = \underset{z}{\operatorname{argmax}} (v - s(z)) F^{n-1}(z)$$

• First-order-condition:

$$(v - s(v))(n-1)f(v)F^{n-2}(v) = s'(v)F^{n-1}(v) \Rightarrow v = s(v) + \frac{s'(v)F(v)}{(n-1)f(v)}$$

• By setting b = s(v):

$$G(b) = \Pr[\tilde{b} \le b] = \Pr[\tilde{v} \le s^{-1}(b)] = F(s^{-1}(b))$$

$$g(b) = F(s^{-1}(b))' = \frac{f(s^{-1}(b))}{s'(s^{-1}(b))}$$

• Change variables $v = s^{-1}(b)$ in FOC:

$$s^{-1}(b) = b + \frac{G(b)}{(n-1)g(b)}$$

First Price Auction: Non-Parametric Identification [Guerre-Perrigne-Vuong'00]

hidden value
$$v = s^{-1}(b) = b + \frac{G(b)}{(n-1)g(b)} = \xi(b, G)$$

• If G strictly increasing continuous and with continuous density then: $F(v) = G\big(\xi^{-1}(v,G)\big)$

F can be identified when having access to G!

First Price Auction: Non-Parametric Estimation [Guerre-Perrigne-Vuong'00]

- Sequence of bid samples from each player $\{(B_{it})_{i=1}^N\}_{t=1}^n$
- Estimate G and g non-parametrically via standard approaches
- \hat{G} is empirical CDF:

$$\widehat{G}(\mathbf{b}) = \frac{1}{\mathbf{n} \cdot N} \sum_{i,t} 1\{B_{it} \le b\}$$

• \hat{g} is a kernel-based estimator:

$$\hat{g}(b) = \frac{1}{n \cdot N} \sum_{i,t} \frac{1}{h_n} K\left(\frac{B_{it} - b}{h_n}\right)$$

 K is any density function with zero moments up to m and bounded mth moment

First Price Auction: Non-Parametric **Estimation** [Guerre-Perrigne-Vuong'00]

- Given \hat{G} and \hat{g} we can now find the pseudo-inverse value of the player
- Use empirical version of identification formula

$$\widehat{V}_{it} = B_{it} + \frac{\widehat{G}(B_{it})}{(n-1)\,\widehat{g}(B_{it})}$$

• Similarly define second-stage estimators of
$$\hat{F}$$
 and \hat{f} :**
$$\hat{F}(\mathbf{v}) = \frac{1}{\mathbf{n} \cdot N} \sum_{i,t} 1\{\hat{V}_{it} \leq v\}$$

$$\hat{f}(\mathbf{v}) = \frac{1}{\mathbf{n} \cdot N} \sum_{i,t} \frac{1}{h_n} K\left(\frac{\hat{V}_{it} - b}{h_n}\right)$$

^{**} Need some modifications if one wants unbiasedness

Uniform Rates of Convergence

- \bullet Suppose f has uniformly bounded continuous first derivative
- If we observed values then uniform convergence rate of $\left(\frac{n}{\log(n)}\right)^{-1/3}$
 - From classic results in non-parametric regression [Stone'82]
- Now that only bids are observed, [GPV'00] show that best achievable

is:
$$\left(\frac{n}{\log(n)}\right)^{-\frac{1}{2}}$$

• The density f depends on the derivative of g

What if only winning bid is observed?

- For instance in a Dutch auction
- CDF of winning bid is simply:

$$G_W(b) = G(b)^N \Rightarrow G(b) = (G_W(b))^{\frac{1}{N}}$$

Hence, densities are related as:

$$g(b) = \frac{1}{N} g_W(b) (G_W(b))^{\frac{1}{N}-1}$$

- Thus G and g are identified from G_W and g_W
- ullet Hence, can apply previous argument and identify F and f

What if only winning bid is observed?

Alternatively, we can identify value of winner as:

$$v_W = b_W + \frac{1}{N-1} \frac{G(b_W)}{g(b_W)} = b_W + \frac{N}{N-1} \frac{G_W(b_W)}{g_W(b_W)}$$

- Thus we can identify distribution of highest value F_W and f_W
- Subsequently, use $F(v)=\left(F_W(v)\right)^{\frac{1}{N}}$ and $f(v)=\frac{1}{N}f_W(v)\left(F_W(v)\right)^{\frac{1}{N}-1}$ to identify F and f
- This also gives an estimation strategy (two-stage estimator, similar to case when all bids observed)

Notable Literature

- [Athey-Haile'02]
 - Identification in more complex than independent private values setting.
 - Primarily second price and ascending auctions
 - Mostly, winning price and bidder is observed
 - Most results in IPV or Common Value model
- [Haile-Tamer'03]
 - Incomplete data and partial identification
 - Prime example: ascending auction with large bid increments
 - Provides upper and lower bounds on the value distribution from necessary equilibrium conditions
- [Paarsch-Hong'06]
 - Complete treatment of structural estimation in auctions and literature review
 - Mostly presented in the IPV model

Main Take-Aways

- Closed form solutions of equilibrium bid functions in auctions
- Allows for non-parametric identification of unobserved value distribution
- Easy two-stage estimation strategy (similar to discrete incomplete information games)
- Estimation and Identification robust to what information is observed (winning bid, winning price)
- Typically rates for estimating density of value distribution are very slow

Algorithmic Game Theory and Econometrics

Mechanism Design for Inference Econometrics for Learning Agents

Mechanism Design for Data Science

[Chawla-Hartline-Nekipelov'14]

- Aim to identify a class of auctions such that:
 - By observing bids from the equilibrium of one auction
 - Inference on the equilibrium revenue on any other auction in the class is easy
 - Class contains auctions with high revenue as compared to optimal auction
- Class analyzed: Rank-Based Auctions
 - Position auction with weights $w_1 \ge \cdots \ge w_N \ge w_{N+1} = 0$
 - · Bidders are allocated randomly to positions based only the relative rank of their bid
 - k-th highest bidder gets allocation x_k
 - Pays first price: $x_k b_k$
 - Feasibility: $\sum_{i=1}^{\tau} x_i \leq \sum_{i=1}^{\tau} w_i$
- For "regular" distributions, best rank-based auction is 2-approx. to optimal

Optimizing over Rank-Based Auctions

[Chawla-Hartline-Nekipelov'14]

- Every rank-based auction can be viewed as a new position auction with weights: \overline{w}_i satisfying $\sum_{i=1}^{\tau} \overline{w}_i \leq \sum_{i=1}^{\tau} w_i$
- Thus auctioneer's optimization is over such modifications to the setting
- Each of these auctions is equivalent to running a mixture of k-unit auctions, where k-th unit auction run w.p. $p_k=\overline{w}_k-\overline{w}_{k+1}$
- To calculate revenue of any rank based auction, suffices to calculate expected revenue R_k of each k-th unit auction

Main question. Estimation rates of quantity R_k when observing bids from a given rank-based auction

Estimation analysis

[Chawla-Hartline-Nekipelov'14]

- Similar to the FPA equilibrium characterization used by [GPV'00]
- As always, write everything in quantile space
- With a twist: q = F(v)
- At symmetric equilibrium $s(\cdot)$:

$$b(q) = \underset{z}{\operatorname{argmax}}(v(q) - z)x(b^{-1}(z))$$

• FOC:

$$v(q) = b(q) + \frac{b'(q)x(q)}{x'(q)}$$

• x(q) and x'(q) are known from the rules of the auction

Estimation

[Chawla-Hartline-Nekipelov'14]

- Need to estimate b(q) and b'(q) if we want to estimate v(q)
- Compared to [GPV'00]:
 - $v(q) = F^{-1}(q)$
 - $b(q) = G^{-1}(q), b'(q) = \frac{1}{g(G^{-1}(q))}$
 - Estimating v(q), b(q), b'(q) the same as estimating F, G, g
- Main message. The quantity R_k for any k depends only on b(q) and not on b'(q)! Leads to much faster rates.

Fast Convergence for Counterfactual Revenue [Chawla-Hartline-Nekipelov'14]

- The per agent revenue of a k-unit auction can be written as: $E[R(q)x'_k(q)]$
- R(q) = v(q)(1-q): single buyer revenue from price v(q)
- $x_k(q)$: probability player with quantile q is among k-highest
- Remember $v(q) = b(q) + \frac{b'(q)x(q)}{x'(q)}$
- Dependence on b'(q) is of the form:

$$E\left[b'(q)\frac{x(q)(1-q)x'_k(q)}{x'(q)}\right]$$

• Integrating by parts:

$$E\left[b(q)\left(\frac{x(q)(1-q)x'_k(q)}{x'(q)}\right)'\right]$$

which depends only on b(q) and on "exactly" known quantities

Yields $O\left(\frac{1}{\sqrt{N}}\right)$ convergence* of MSE, since b(q) is essentially a CDF inverted

*Exact convergence depends inversely on x'(q)Need to restrict to rank-based auctions where $x'(q) > \epsilon$ (e.g. mixing each k-unit auction with probability ϵ/n)

Take-away points

[Chawla-Hartline-Nekipelov'14]

- By isolating mechanism design to rank based auctions, we achieve:
 - Constant approximation to the optimal revenue within the class
 - Estimation rates of revenue of each auction in the class of $O(\sqrt{N})$
- Allows for easy adaptation of mechanism to past history of bids

• [Chawla et al. EC'16]: allows for A/B testing among auctions and for a universal B test! (+improved rates)

Econometrics for Learning Agents

[Nekipelov-Syrgkanis-Tardos'15]

- Analyze repeated strategic interactions
- Finite horizon $t \in \{1, ..., T\}$
- Players are learning over time
- Unlike stationary equilibrium, or stationary MPE, or static game

Use no-regret notion of learning behavior:

$$\forall a_i': \sum_t \pi_i(a_i^t, a_{-i}^t; \theta) \ge \sum_t \pi_i(a_i', a_{-i}^t; \theta) - \epsilon$$

High-level approach

[Nekipelov-Syrgkanis-Tardos'15]

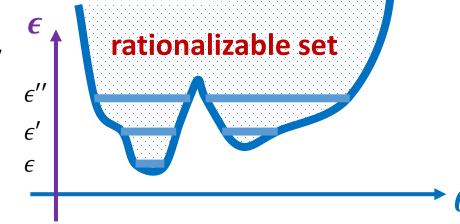
If we assume ϵ regret

For all
$$a_i'$$
: $\frac{1}{T} \sum_{t} \pi_i(a^t; \theta) \ge \frac{1}{T} \sum_{t} \pi_i(a_i', a_{-i}^t; \theta) - \epsilon$

Current average utility

Average deviating utility Regret from fixed action

- Inequalities that unobserved θ must satisfy
- Varying ϵ we get the rationalizable set of parameters

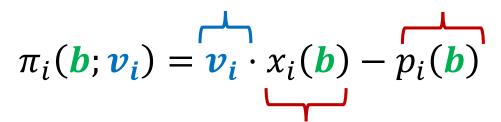


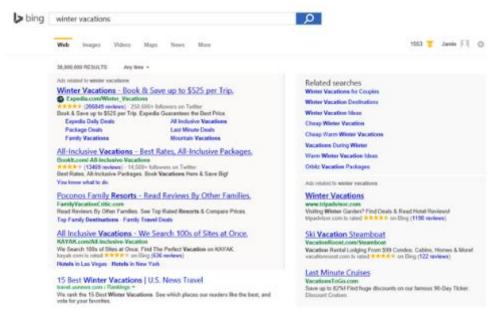
Application: Online Ad Auction setting

[Nekipelov-Syrgkanis-Tardos'15]

- Each player has value-per-click v_i
- Bidders ranked according to a scoring rule
- Number of clicks and cost depends on position
- Quasi-linear utility

Value-Per-Click Expected Payment





Expected click probability

Main Take-Aways of Econometric Approach

[Nekipelov-Syrgkanis-Tardos'15]

- Rationalizable set is convex
- Support function representation of convex set depends on a one dimensional function
- Can apply one-dimensional non-parametric regression rates
- Avoids complicated set-inference approaches

Comparison with prior econometric approaches:

- Behavioral learning model computable in poly-time by players
- Models error in decision making as unknown parameter rather than profit shock with known distribution
- Much simpler estimation approach than prior repeated game results
- Can handle non-stationary behavior

Potential Points of Interaction with Econometric Theory

- Inference for objectives (e.g. welfare, revenue, etc.) + combine with approximation bounds (see e.g. Chawla et al'14-16, Hoy et al.'15, Liu-Nekipelov-Park'16, Coey et al.'16)
- Computational complexity of proposed econometric methods, computationally efficient alternative estimation approaches
- Game structures that we have studied exhaustively in theory (routing games, simple auctions)
- Game models with combinatorial flavor (e.g. combinatorial auctions)
- Computational learning theory and online learning theory techniques for econometrics
- Finite sample estimation error analysis

AGT+Data Science

 Large scale mechanism design and game theoretic analysis needs to be data-driven

- Learning good mechanisms from data
- Inferring game properties from data
- Designing mechanisms for good inference
- Testing our game theoretic models in practice (e.g. Nisan-Noti'16)

References

Primer on Econometric Theory

- Newey-McFadden, 1994: Large sample estimation and hypothesis testing, Chapter 36, Handbook of Econometrics
- Amemiya, 1985: Advanced Econometrics, Harvard University Press
- Hong, 2012: Stanford University, Dept. of Economics, course ECO276, Limited Dependent Variables

Surveys on Econometric Theory for Games

- Ackerberg-Benkard-Berry-Pakes , 2006: Econometric tools for analyzing market outcomes, Handbook of Econometrics
- Bajari-Hong-Nekipelov, 2010: Game theory and econometrics: a survey of some recent research, NBER 2010
- Berry-Tamer, 2006: *Identification in models of oligopoly entry*, Advances in Economics and Econometrics

Complete Information Games

- Bresnahan-Reiss, 1990: Entry in monopoly markets, Review of Economic Studies
- Bresnahan-Reiss, 1991: Empirical models of discrete games, Journal of Econometrics
- Berry, 1992: Estimation of a model of entry in the airline industry, Econometrica
- Tamer, 2003: Incomplete simultaneous discrete response model with multiple equilibria, Review of Economic Studies
- Ciliberto-Tamer, 2009: Market Structure and Multiple Equilibria in Airline Markets, Econometrica
- Beresteanu-Molchanov-Molinari, 2011: Sharp identification regions in models with convex moment predictions, Econometrica
- Chernozhukov-Hong-Tamer, 2007: Estimation and confidence regions for parameter sets in econometrics models, Econometrica
- Bajari-Hong-Ryan, 2010: Identification and estimation of a discrete game of complete information, Econometrica

References

Dynamic Games of Incomplete Information

- Bajari-Benkard-Levin, 2007: Estimating dynamic models of imperfect competition, Econometrica
- Aguirregabiria-Mira, 2007: Sequential estimation of dynamic discrete games, Econometrica
- Pakes-Ostrovsky-Berry, 2007: Simple estimators for the parameters of discrete dynamic games (with entry/exit examples), RAND Journal of Economics
- Pesendorfer-Schmidt-Dengler, 2003: Identification and estimation of dynamic games
- Bajari-Chernozhukov-Hong-Nekipelov, 2009: Non-parametric and semi-parametric analysis of a dynamic game model
- Hotz-Miller, 1993: Conditional choice probabilities and the estimation of dynamic models, Review of Economic Studies

Static Games of Incomplete Information

• Bajari-Hong-Krainer-Nekipelov, 2006: Estimating static models of strategic interactions, Journal of Business and Economic Statistics

Semi-Parametric two-stage estimation \sqrt{n} -consistency

- Hong, 2012: ECO276, Lecture 5: Basic asymptotic for \sqrt{n} Consistent semiparametric estimation
- Robinson, 1988: Root-n-consistent semiparametric regression, Econometrica
- Newey, 1990: Semiparametric efficiency bounds, Journal of Applied Econometrics
- Newey, 1994: The asymptotic variance of semiparametric estimators, Econometrica
- Ai-Chen, 2003: Efficient estimation of models with conditional moment restrictions containing unknown functions, Econometrica
- Chen, 2008: Large sample sieve estimation of semi-nonparametric models Chapter 76, Handbook of Econometrics

References

Auctions

- Guerre-Perrigne-Vuong, 2000: Optimal non-parametric estimation of first-price auctions, Econometrica
- Haile-Tamer, 2003: Inference in an incomplete model of English auctions, Journal of Political Economy
- Athey-Haile, 2007: Non-parametric approaches to auctions, Handbook of Econometrics
- Paarsch-Hong, 2006: An introduction to the structural econometrics of auction data, The MIT Press

Algorithmic Game Theory and Econometrics

- Chawla-Hartline-Nekipelov, 2014: Mechanism design for data science, ACM Conference on Economics and Computation
- Nekipelov-Syrgkanis-Tardos, 2015: Econometrics for learning agents, ACM Conference on Economics and Computation
- Chawla-Hartline-Nekipelov, 2016: A/B testing in auctions, ACM Conference on Economics and Computation
- Hoy-Nekipelov-Syrgkanis, 2015: Robust data-driven guarantees in auctions, Workshop on Algorithmic Game Theory and Data Science