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Comparison with Part (1)

• Optimization vs Estimation
• Part 1: find revenue maximizing mechanism from data
• Part 2: interested in inference of private parameters of structural model

• Truthful vs Strategic Data
• Part 1: data set were i.i.d. samples of player valuations
• Part 2: data are observed outcomes of strategic interaction (e.g. bids in FPA)

• Technical Exposition vs Overview
• Part 1: in-depth exposition of basic tools
• Part 2: overview of econometric theory for games literature with some in-depth drill 

downs



A Primer on Econometric Theory
Basic Tools and Terminology



Econometric Theory

• Given a sequence of i.i.d. data points 𝑍1, … , 𝑍𝑛
• Each 𝑍𝑖 is the outcome of some structural model

𝑍𝑖 ∼ 𝐷 𝜃0 , with 𝜃0 ∈ Θ

• Parameter space Θ can be:
• Finite dimensional (e.g. 𝑅𝑑): parametric model

• Infinite dimensional (e.g. function): non-parametric model

• Mixture of finite and infinite: 
• If we are interested only in parametric part: Semi-parametric

• If we are interested in both: Semi-nonparametric



Main Goals

• Identification: If we new “population distribution” 𝐷(𝜃0) then can we 
pin-point 𝜃0?

• Estimation: Devise an algorithm that outputs an estimate መ𝜃𝑛 of 𝜃0
when having 𝑛 samples



Estimator Properties of Interest

• Finite Sample Properties of Estimators:
• Bias = 𝐸 ෠𝜃𝑛 − 𝜃0 = 0?

• Variance: Var( ෠𝜃𝑛) ?

• Mean-Squared-Error (MSE): 𝐸 ෠𝜃𝑛 − 𝜃0
2
= Variance + Bias2

• Large Sample Properties: 𝑛 → ∞
• Consistency: ෠𝜃𝑛 → 𝜃0?

• Asymptotic Normality: 𝑎𝑛 ෠𝜃𝑛 − 𝜃0 → 𝑁(0, 𝑉) ?

• 𝑛-consistency: 𝑎𝑛 = 𝑛 ?

• Efficiency: is limit variance 𝑉 information theoretically optimal? (typically 
achieved by MLE estimator)



General Classes of Estimators

• Extremum Estimator
𝜃0 = argmax𝜃∈Θ 𝑄𝑛(𝜃)

• Examples

• MLE: 𝑄𝑛 𝜃 =
1

𝑛
σ𝑖=1
𝑛 ln 𝑓(𝑧𝑖; 𝜃)

• GMM Estimator: suppose in population 𝐸[𝑚 𝑧, 𝜃 ] = 0. Empirical analogue: 
for some W positive definite

𝑄𝑛 𝜃 =
1

𝑛
෍

𝑖

𝑚 𝑧𝑖 , 𝜃

′

𝑊
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෍

𝑖

𝑚 𝑧𝑖 , 𝜃



Consistency of Extremum Estimators

• If 𝑄𝑛 𝜃 =
1

𝑛
σ𝑖 𝑔 𝑧𝑖 , 𝜃 and 𝑄0 𝜃 = 𝐸 𝑔 𝑧, 𝜃 , then (2.,3.) will be 

satisfied if 
• 𝑔 𝑧, 𝜃 is continuous 
• 𝑔 𝑧, 𝜃 ≤ 𝑑(𝑧) with 𝐸 𝑑 𝑧 ≤ ∞

• Typically referred to as “regularity conditions”

Consistency Theorem. If there is a function 𝑄0 𝜃 s.t.:
1. 𝑄0 𝜃 is uniquely maximized at 𝜃0
2. 𝑄0 𝜃 is continuous
3. 𝑄𝑛 𝜃 converges uniformly in probability to 𝑄0 𝜃 , i.e. sup

𝜃
𝑄𝑛 𝜃 − 𝑄0 𝜃 →𝑝 0

Then መ𝜃 →𝑝 𝜃0



Asymptotic Normality

• Under “regularity conditions” asymptotic normality of extremum estimators follows by 
ULLN,  CLT, Slutzky thm and consistency

• Roughly: consider case 𝑄𝑛 𝜃 =
1

𝑛
σ𝑖 𝑔 𝑧𝑖 , 𝜃

• Take first order condition
1

𝑛
෍

𝑖

𝛻𝜃𝑔(𝑧𝑖 , ෠𝜃) = 0

• Linearize around 𝜃0 by mean value theorem

1

𝑛
෍

𝑖

𝛻𝜃𝑔 𝑧𝑖 , 𝜃0 +
1

𝑛
෍

𝑖

𝛻𝜃𝜃𝑔 𝑧𝑖 , ҧ𝜃 ෠𝜃 − 𝜃0 = 0

• Re-arrange:

𝑛 ෠𝜃 − 𝜃0 =
1

𝑛
෍

𝑖

𝛻𝜃𝜃𝑔 𝑧𝑖 , ҧ𝜃

−1

⋅
1

𝑛
෍

𝑖

𝛻𝜃𝑔 𝑧𝑖 , 𝜃0

→𝑝 𝐸 𝛻𝜃𝜃𝑔 𝑧, 𝜃0 →𝑑 𝑁 0, 𝑉𝑎𝑟 𝛻𝜃𝑔 𝑧, 𝜃0

→𝑑 𝑁 0, 𝑈

In practice, typically variance is 
computed via Bootstrap [Efron’79]:
Re-sample from your samples with 

replacement and compute empirical 
variance



Econometric Theory for Games



Econometric Theory for Games

• 𝑍𝑖 are observable quantities from a game being played 

• 𝜃0: unobserved parameters of the game

• Address identification and estimation in a variety of game theoretic 
models assuming players are playing according to some equilibrium
notion



Why useful?

• Scientific: economically meaningful quantities

• Perform counter-factual analysis: what would happen if we 
change the game?

• Performance measures: welfare, revenue

• Testing game-theoretic models: if theory on estimated 
quantities predicts different behavior, then in trouble



Outline of the rest of the talk

• Complete information games
• Multiplicity of equilibria: partial identification and set inference

• Discrete Static and Dynamic Games of Incomplete Information
• Two-stage estimators

• Auction games
• Identification and estimation in first price auctions with independent private 

values

• Algorithmic game theory and econometrics
• Mechanism design for data science

• Econometrics for learning agents



A Seminal Example
Entry Games [Bresnahan-Reiss’90,91] and [Berry’92]



Entry Game

• Two firms deciding whether to enter a market

• Entry decision 𝑦𝑖 ∈ {0,1}

• Profits from entry:
𝜋1 = 𝑥 ⋅ 𝛽1 + 𝑦2𝛿1 + 𝜖1
𝜋2 = 𝑥 ⋅ 𝛽2 + 𝑦1𝛿2 + 𝜖2

• Equilibrium:
𝑦𝑖 = 1{𝜋𝑖 ≥ 0}

• 𝜖𝑖 ∼ 𝐹𝑖: at each market i.i.d. from known distribution

• 𝑥: observable characteristics of each market

• 𝛽𝑖 , 𝛿𝑖: constants across markets



Assume 𝛿1, 𝛿2 < 0

• In all regions: equilibrium number of entrants 𝑁 = 𝑦1 + 𝑦2 is unique

• Can perform MLE estimation using 𝑁 as observation

𝜖1

𝜖2

(1,1)

Both players always enter
𝜖1 ≥ − 𝛽1, 𝑥1 − 𝛿1
𝜖2 ≥ − 𝛽2, 𝑥2 − 𝛿2

(1,0)

(0,1) Player 1 enters only in monopoly
𝜖1 ≤ − 𝛽1, 𝑥1 − 𝛿1

Player 2 always enters
𝜖2 ≥ − 𝛽2, 𝑥2 − 𝛿2

− 𝛽1, 𝑥1 − 𝛿1, − 𝛽2, 𝑥2 − 𝛿2

− 𝛽1, 𝑥1 , − 𝛽2, 𝑥2

Player 1 never enters
𝜖1 ≤ − 𝛽1, 𝑥1

Player 2 enters only in monopoly
− 𝛽2, 𝑥2 ≤ 𝜖2 ≤ − 𝛽2, 𝑥2 − 𝛿2

(0,1) or (1,0) 

(0,0)

[Bresnahan-Reiss’90,91], [Berry’92]

𝜋1 = 𝑥 ⋅ 𝛽1 + 𝑦2𝛿1 + 𝜖1
𝜋2 = 𝑥 ⋅ 𝛽2 + 𝑦1𝛿2 + 𝜖2



More generally

• Equilibrium will be some selection of possible equilibria 𝑆(𝜖)

• Imposes inequalities on probability of each action profile

𝜖1

𝜖2

(1,1)

(1,0)

(0,1)

(0,1) or (1,0) 

(0,0)

𝑅2
𝑅1

𝑅4

𝑅5

𝑅3

Identified set Θ𝐼: 𝛽, 𝛿 s.t.:
𝑃11 = Pr 𝑅1
𝑃00 = Pr 𝑅5

Pr[𝑅2] ≤ 𝑃01 ≤ Pr 𝑅2 + Pr[𝑅3]
Pr 𝑅4 ≤ 𝑃10 ≤ Pr 𝑅3 + Pr 𝑅4

[Tamer’03] [Cilliberto-Tamer’09]



Estimating the Identified set

Θ𝐼 = {𝛽, 𝛿: 𝑃11 = Pr 𝑅1 , 𝑃00 = Pr 𝑅5 ,
Pr 𝑅2 ≤ 𝑃01 ≤ Pr 𝑅2 + Pr 𝑅3 ,
Pr 𝑅4 ≤ 𝑃10 ≤ Pr 𝑅3 + Pr 𝑅4 }

• Distribution of 𝜖 known: Pr[𝑅𝑖] some known function 𝐺𝑖(𝑋; 𝛽, 𝛿) of parameters

• 𝑦1, 𝑦2, 𝑋: observed in the data

• Replace population probabilities with empirical: 𝑃𝑦1𝑦2𝑋 → ෠𝑃𝑦1𝑦2𝑋
• Add slack to allow for error in empirical estimates:

෠𝑃𝑦1,𝑦2𝑋 ≤ 𝐺2 𝑋; 𝛽, 𝛿 + 𝐺3 𝑋; 𝛽, 𝛿 +
𝜈𝑛
𝑛

where 𝜈𝑛 → ∞ and 
𝜈𝑛

𝑛
→ 0 (asymptotic properties [Chernozukhov-Hong-Tamer’07])

[Cilliberto-Tamer’09]



General Games

• Ω: probability space where unobserved randomness lives (e.g. 𝜖)

• Each 𝜃 defines the set of equilibria for each 𝜔 ∈ Ω

• One of these equilibria will be selected

• We only observe distribution of outcomes 𝑦: Pr[𝑦 = 𝑘] for each possible equilibrium 𝑘

• Is 𝜃 admissible for a given population of outcomes?

Ω

𝑦 is an 
equilibri

um 𝑦′ is an 
equilibri

um

𝑦′′ is an 
equilibri

um

𝑦′′′ is an 
equilibri

um

𝜃



Characterization of the Identified Set

In games:

• 𝐾 is the set of possible equilibria of a game 

• 𝑍𝜃 is the set of equilibria for a given realization of the unobserved 𝜖, 

• Pr[𝑦𝜃 ∈ 𝑆]: population distribution of action profiles 

• Thus: Θ𝐼 = {𝜃: ∀𝑆 ⊆ 𝐾, Pr 𝑦𝜃 ∈ 𝑆 ≤ Pr[𝑍𝜃 ∩ 𝑆 ≠ ∅]}

• Defined as a set of moment inequalities

[Beresteanu-Molchanov-Mollinari’09]

Theorem [Artsein’83, Beresteanu-Molchanov-Mollinari’07]. Let 𝑍𝜃 be a random 
set in 2𝐾 and let 𝑦𝜃 be a random variable in 𝐾. Then 𝑦𝜃 is a selection of 𝑍𝜃 (i.e. 
𝑦𝜃 ∈ 𝑍𝜃 a.s.) if and only if:

∀𝑆 ⊆ 𝐾: Pr 𝑦𝜃 ∈ 𝑆 ≤ Pr[𝑍𝜃 ∩ 𝑆 ≠ ∅]



Characterization of the Identified Set

• For the example latter is equivalent to Θ𝐼 of [Cilliberto-Tamer’09]

• For more general settings it is strictly smaller and sharp

• Can perform estimation based on moment inequalities similar to [CT’09]

෡Θ𝐼 = 𝜃: ෠𝑃 𝑦𝜃 ∈ 𝑆 ≤ Pr 𝑍𝜃 ∩ 𝑆 +
𝜈𝑛
𝑛

where 𝜈𝑛 → ∞ and 
𝜈𝑛

𝑛
→ 0

[Beresteanu-Molchanov-Mollinari’09]

Theorem [Artsein’83, Beresteanu-Molchanov-Mollinari’07]. Let 𝑍𝜃 be a random 
set in 2𝐾 and let 𝑦𝜃 be a random variable in 𝐾. Then 𝑦𝜃 is a selection of 𝑍𝜃 (i.e. 
𝑦𝜃 ∈ 𝑍𝜃 a.s.) if and only if:

∀𝑆 ⊆ 𝐾: Pr 𝑦𝜃 ∈ 𝑆 ≤ Pr[𝑍𝜃 ∩ 𝑆 ≠ ∅]



Main take-aways

• Games of complete information are typically partially identified

• Multiplicity of equilibrium is the main issue

• Leads to set-estimation strategies and machinery [Chernozhukov et 
al’09]

• Very interesting random set theory for estimating the sharp 
identifying set



Incomplete Information Games and 
Two-Stage Estimators
Static Games: [Bajari-Hong-Krainer-Nekipelov’12]

Dynamic Games: [Bajari-Benkard-Levin’07], [Pakes-Ostrovsky-
Berry’07], [Aguirregabiria-Mira’07], [Ackerberg-Benkard-Berry-
Pakes’07], [Bajari-Hong-Chernozhukov-Nekipelov’09]



High level idea

• At equilibrium agents have beliefs about other players actions and 
best respond

• If econometrician observes the same information about opponents as 
the player does then:
• Estimate these beliefs from the data in first stage

• Use best-response inequalities to these estimated beliefs in the second stage 
and infer parameters of utility



Static Entry Game with Private Shocks

• Two firms deciding whether to enter a market

• Entry decision 𝑦𝑖 ∈ {0,1}

• Profits from entry:
𝜋1 = 𝑥 ⋅ 𝛽1 + 𝑦2𝛿1 + 𝜖1
𝜋2 = 𝑥 ⋅ 𝛽2 + 𝑦1𝛿2 + 𝜖2

• 𝜖𝑖 ∼ 𝐹𝑖: at each market i.i.d. from known distribution and private to 
player

• 𝑥: observable characteristics of each market

• 𝛽𝑖 , 𝛿𝑖: constants across markets



Static Entry Game with Private Shocks

• Firms best-respond only in expectation

• Expected profits from entry:
Π1 = 𝑥 ⋅ 𝛽1 + Pr 𝑦2 = 1|𝑥 𝛿1 + 𝜖1
Π2 = 𝑥 ⋅ 𝛽2 + Pr[𝑦1 = 1|𝑥] 𝛿2+ 𝜖2

• Let 𝜎𝑖 𝑥 = Pr[𝑦𝑖 = 1|𝑥]

• Then:
𝜎1 𝑥 = Pr[𝑥 ⋅ 𝛽1 + 𝜎2 𝑥 𝛿1 + 𝜖1 > 0]
𝜎2 𝑥 = Pr[𝑥 ⋅ 𝛽2 + 𝜎1 𝑥 𝛿2 + 𝜖2 > 0]



Static Entry Game with Private Shocks

• If 𝜖𝑖 is distributed according to an extreme value distribution:
𝜎1 𝑥 ∝ exp[𝑥 ⋅ 𝛽1 + 𝜎2 𝑥 𝛿1]
𝜎2 𝑥 ∝ exp[𝑥 ⋅ 𝛽2 + 𝜎1 𝑥 𝛿2]

• Non-linear system of simultaneous equations

• Computing fixed point is computationally heavy and fixed-point might not be 
unique

• Idea [Hotz-Miller’93, Bajari-Benkard-Levin’07, Pakes-Ostrovsky-Berry’07, 
Aguirregabiria-Mira’07, Bajari-Hong-Chernozhukov-Nekipelov’09]: Use a two 
stage estimator

1. Compute non-parametric estimate ො𝜎(𝑥) of function 𝜎𝑖 𝑥 from data

2. Run parametric regressions for each agent individually from the condition that:
𝜎𝑖 𝑥 ∝ exp[𝑥 ⋅ 𝛽𝑖 + ො𝜎−𝑖 𝑥 𝛿𝑖]

3. The latter is a simple logistic regression for each player to estimate 𝛽𝑖 , 𝛿𝑖



Simple case: finite discrete states

• If there are 𝑑 states, then 𝜎𝑖 are 𝑑-dimensional parameter vectors

• Easy 𝑛-consistent first-stage estimators ො𝜎 = ො𝜎1, ො𝜎2 of 𝜎 = (𝜎1, 𝜎2), i.e.:
𝑛 ො𝜎𝑖 − 𝜎 → 𝑁(0, 𝑉)

• Suppose for second stage we do generalized method of moment estimator:
• Let ෠𝜃 = መ𝛽1, መ𝛽2, መ𝛿1, መ𝛿2 and 𝜃0 = 𝛽1, 𝛽2, 𝛿2, 𝛿2

• Let 𝑦𝑡 = 𝑦1𝑡 , 𝑦2𝑡 and Γ 𝑥, 𝜎, 𝜃 = Γ1 𝑥, 𝜎, 𝜃 , Γ2 𝑥, 𝜎, 𝜃 with Γ𝑖 𝑥, 𝜎, 𝜃 =
𝑒𝑥⋅𝛽𝑖+𝜎−𝑖𝛿

1+𝑒𝑥⋅𝛽𝑖+𝜎−𝑖𝛿

• Then second stage estimator ෠𝜃 is  the solution to:

1

𝑛
෍

𝑡=1

𝑛

𝐴 𝑥𝑡 ⋅ 𝑦𝑡 − Γ 𝑥𝑡 , ො𝜎, ෠𝜃 = 0

• Does first stage error affect second stage variance and how?

• This is a general question about two stage estimators



Two-Stage GMM with 𝑛-Consistent First 
Stage
• Run a first step estimator ො𝜎 of 𝜎, with 𝑛 ො𝜎 − 𝜎 → 𝑁 0, 𝑉

• Second stage is a GMM estimator based on moment conditions 𝐸 𝑚 𝑧, 𝜃, 𝜎 = 0, i.e. መ𝜃 satisfies:
1

𝑛
෍

𝑡=1

𝑛

𝑚 𝑧𝑡, መ𝜃, ො𝜎 = 0

• Linearize around 𝜃:

𝑛 መ𝜃 − 𝜃 = −
1

𝑛
෍

𝑡=1

𝑛
𝜕𝑚 𝑧𝑡 , ҧ𝜃, ො𝜎

𝜕𝜃

−1

⋅
1

𝑛
෍

𝑡=1

𝑛

𝑚 𝑧𝑡, 𝜃, ො𝜎

• Now the second term can be linearized around 𝜎:
1

𝑛
෍

𝑡=1

𝑛

𝑚 𝑧𝑡, 𝜃, ො𝜎 =
1

𝑛
෍

𝑡=1

𝑛

𝑚(𝑧𝑡, 𝜃, 𝜎) +
1

𝑛
෍

𝑡=1

𝜕𝑚 𝑧𝑡 , 𝜃, ത𝜎

𝜕𝜎
⋅ 𝑛( ො𝜎 − 𝜎)

[Newey-McFadden’94: Large Sample Estimation and Hypothesis Testing]



Continuous State Space: 𝑥 ∈ 𝑅𝑑

• Then there is no 𝑛-consistent first stage non-parametric estimator ො𝜎(⋅)
for function 𝜎 ⋅ = 𝐸[𝑦|𝑥]

• Remarkably: still 𝑛-consistency for second stage estimate መ𝜃!!
• For instance: 

• Kernel estimator for the first stage (tune bandwidth, “undersmoothing”)
• GMM for second stage

• Intuition (my rough take on it):
• Kernel estimators have tunable “bias”-”variance” tradeoffs
• Close to true 𝜃: first stage bias and variance affect linearly second stage estimate

• If variance and bias decay at 𝑛−
1

2 rates we are fine

• Requires at least 𝑛−
1

4-consistency of first stage
• Typically we have wiggle room to get variance of that order while decreasing bias to 

decay at 𝑛−
1

2 rate (e.g. decrease the bandwidth of a kernel estimate)

[Bajari-Hong-Kranier-Nekipelov’12]

For detailed exposition see: 
• [Newey94, Ai-Chen’03]
• Section 8.3 of survey of [Newey-McFadden’94]
• Han Hong’s Lecture notes on semi-parametric 

efficiency [ECO276 Stanford]



Dynamic Games

• Similar ideas extend to dynamic games with discounted payoffs

• Discrete state space st ∈ 𝑆, private shock space 𝜖𝑖 ∈ 𝑉𝑖, discrete or continuous 
actions 𝐴1, … , 𝐴𝑁

• Steady state and at Markov-Perfect-Equilibria: mapping from states and shocks to 
actions.

𝑉𝑖 𝑠; 𝜎, 𝜃 = 𝐸 σ𝑡=0
𝑇 𝛽𝑡𝜋𝑖 𝜎 𝑠𝑡 , 𝜈𝑡 , 𝑠𝑡 , 𝜖𝑖𝑡 𝑠0 = 𝑠; 𝜃

• Action specific i.i.d. profit shock and 𝜋𝑖 is additively separable:
𝜋𝑖 𝑎, 𝑠, 𝜖𝑖 = ෤𝜋𝑖 𝑎, 𝑠 + 𝜖𝑖(𝑎𝑖)

• Define 𝑣𝑖 𝑎𝑖 , 𝑠 : “shockless” discounted expected equilibrium payoff. 

• Player chooses action 𝑎𝑖 if:
𝑣𝑖 𝑎𝑖 , 𝑠 + 𝜖𝑖 𝑎𝑖 ≥ 𝑣𝑖 𝑎𝑖

′, 𝑠 + 𝜖𝑖(𝑎𝑖
′)



Dynamic Games: First Stage

• Suppose 𝜖𝑖 are extreme value and 𝑣𝑖 0, 𝑠 = 0, then
log 𝑃𝑖(𝑎𝑖|𝑠) − log𝑃𝑖 0 𝑠 = 𝑣𝑖(𝑎𝑖 , 𝑠)

• Non-parametrically estimate ෡𝑃𝑖 𝑎𝑖 𝑠

• Invert and get estimate ො𝑣𝑖(𝑎𝑖 , 𝑠)

• We have a non-parametric first-stage estimate of the policy function:
ො𝜎𝑖 𝑠, 𝜖𝑖 = argmax

𝑎𝑖∈𝐴𝑖

ො𝑣𝑖(𝑎𝑖 , 𝑠) − 𝜖𝑖(𝑎𝑖)

• Combine with non-parametric estimate of state transition probabilities

• Compute a non-parametric estimate of discounted payoff for each policy, 
state, parameter tuple: ෠𝑉𝑖(𝜎, 𝑠; 𝜃), by forward simulation

[Bajari-Benkard-Levin’07]



Dynamic Games: First Stage

• If payoff is linear in parameters:
𝜋𝑖 𝑎, 𝑠, 𝜖𝑖; 𝜃 = Ψi 𝑎, 𝑠, 𝜖𝑖 ⋅ 𝜃

• Then:
𝑉𝑖 𝜎, 𝑠; 𝜃 = 𝑊𝑖 𝜎, 𝑠 ⋅ 𝜃

• Suffices to do only simulation for each (policy, state) pair and not for 
each parameter, to get first stage estimates ෡𝑊𝑖(𝜎, 𝑠)

[Bajari-Benkard-Levin’07]



Dynamic Games: Second Stage

• We know by equilibrium:
𝑔 𝑖, 𝑠, 𝜎𝑖

′; 𝜃 = 𝑉𝑖 𝜎, 𝑠; 𝜃 − 𝑉𝑖 𝜎𝑖
′, 𝜎−𝑖; 𝜃 ≥ 0

• Can use an extremum estimator: 
• Definite a probability distribution over (player, state, deviation) triplets
• Compute expected gain from [deviation]- under the latter distribution

𝑄 𝜃 = 𝐸[min{𝑔 𝑖, 𝑠, 𝜎𝑖
′; 𝜃 , 0}]

• By Equilibrium 𝑄 𝜃0 = 0 = min
𝜃

𝑄 𝜃

• Do empirical analogue with estimate ො𝑔:
ො𝑔 𝑖, 𝑠, 𝜎𝑖

′; 𝜃 = ෠𝑉𝑖 ො𝜎, 𝑠; 𝜃 − ෠𝑉𝑖 𝜎𝑖
′, ො𝜎−𝑖; 𝜃

coming from first stage estimates

• Two sources of error: 
• Error of ො𝜎 and ෡P 𝑠′ 𝑠, 𝑎 : 𝑛-consistent, asymptotically normal, for discrete actions/states
• Simulation error: can be made arbitrarily small by taking as many sample paths as you want

[Bajari-Benkard-Levin’07]



Notable Literature

• [Pakes-Ostrovsky-Berry’07], [Aguirregabiria-Mira’07], [Ackerberg-
Benkard-Berry-Pakes’07], [Bajari-Hong-Chernozhukov-Nekipelov’09]
• Provide similar but alternative two stage estimation approaches for dynamic 

games

• [BHCN’09] can handle continuous states and semi-parametric estimation

• All of them based on the inversion strategy proposed by [Hotz-Miller’93] for 
estimating single agent MDPs 



Main take-aways

• When econometrician’s information is the same as each individuals 
(i.e. shocks are private to the players)

• Model can be viewed as fixed point of distribution over actions of 
players over the unobserved heterogeneity

• Can apply two-stage simulation approaches to avoid solving the fixed-
point

• Data “designates” which equilibrium is selected

• Needs main assumption of “unique equilibrium in the data”



Auction Games:
Identification and Estimation
FPA IPV: [Guerre-Perrigne-Vuong’00], 

Beyond IPV: [Athey-Haile’02]

Partial Identification: [Haile-Tamer’03]

Comprehensive survey of structural estimation in auctions: [Paarsch-Hong’06]



First Price Auction: Non-Parametric 
Identification
• Sealed bid first price auction

• Symmetric bidders: value 𝑣𝑖 ∼ 𝐹

• Observe all submitted bids

• Bids come from symmetric Bayes-Nash equilibrium

Non-parametric identification: Can we identify 𝐹 from the distribution 
of bids 𝐺?

[Guerre-Perrigne-Vuong’00]



First Price Auction: Non-Parametric 
Identification
• At symmetric equilibrium 𝑠(⋅):

𝑣 = argmax
𝑧

𝑣 − 𝑠 𝑧 𝐹𝑛−1(𝑧)

• First-order-condition:

𝑣 − 𝑠 𝑣 𝑛 − 1 𝑓 𝑣 𝐹𝑛−2 𝑣 = 𝑠′ 𝑣 𝐹𝑛−1 𝑣 ⇒ 𝑣 = 𝑠 𝑣 +
𝑠′ 𝑣 𝐹 𝑣

𝑛 − 1 𝑓(𝑣)

• By setting 𝑏 = 𝑠(𝑣):
𝐺 𝑏 = Pr ෨𝑏 ≤ 𝑏 = Pr ෤𝑣 ≤ 𝑠−1 𝑏 = 𝐹 𝑠−1 𝑏

𝑔 𝑏 = 𝐹 𝑠−1 𝑏
′
=

𝑓 𝑠−1(𝑏)

𝑠′ 𝑠−1 𝑏

• Change variables 𝑣 = 𝑠−1(𝑏) in FOC:

𝑠−1 𝑏 = 𝑏 +
𝐺 𝑏

𝑛 − 1 𝑔 𝑏

[Guerre-Perrigne-Vuong’00]



First Price Auction: Non-Parametric 
Identification

hidden value 𝑣 = 𝑠−1 𝑏 = 𝑏 +
𝐺 𝑏

𝑛 − 1 𝑔 𝑏
= 𝜉(𝑏, 𝐺)

• If 𝐺 strictly increasing continuous and with continuous density then:
𝐹 𝑣 = 𝐺 𝜉−1 𝑣, 𝐺

• 𝐹 can be identified when having access to G!

[Guerre-Perrigne-Vuong’00]



First Price Auction: Non-Parametric 
Estimation
• Sequence of bid samples from each player 𝐵𝑖𝑡 𝑖=1

𝑁
𝑡=1

𝑛

• Estimate 𝐺 and 𝑔 non-parametrically via standard approaches
• ෠𝐺 is empirical CDF:

෠𝐺 b =
1

n ⋅ 𝑁
෍

𝑖,𝑡

1{𝐵𝑖𝑡 ≤ 𝑏}

• ො𝑔 is a kernel-based estimator:

ො𝑔 b =
1

n ⋅ 𝑁
෍

𝑖,𝑡

1

ℎ𝑛
𝐾

𝐵𝑖𝑡 − 𝑏

ℎ𝑛

• 𝐾 is any density function with zero moments up to 𝑚 and bounded 𝑚-
th moment

[Guerre-Perrigne-Vuong’00]



First Price Auction: Non-Parametric 
Estimation
• Given ෠𝐺 and ො𝑔 we can now find the pseudo-inverse value of the player
• Use empirical version of identification formula

෠𝑉𝑖𝑡 = 𝐵𝑖𝑡 +
෠𝐺(Bit)

n − 1 ොg Bit
• Similarly define second-stage estimators of ෠𝐹 and መ𝑓:**

෠𝐹 v =
1

n ⋅ 𝑁
෍

𝑖,𝑡

1{ ෠𝑉𝑖𝑡 ≤ 𝑣}

መ𝑓 v =
1

n ⋅ 𝑁
෍

𝑖,𝑡

1

ℎ𝑛
𝐾

෠𝑉𝑖𝑡 − 𝑏

ℎ𝑛

[Guerre-Perrigne-Vuong’00]

** Need some modifications if one wants unbiasedness



Uniform Rates of Convergence

• Suppose 𝑓 has uniformly bounded continuous first derivative

• If we observed values then uniform convergence rate of 
𝑛

log 𝑛

−1/3

• From classic results in non-parametric regression [Stone’82]

• Now that only bids are observed, [GPV’00] show that best achievable 

is: 
𝑛

log 𝑛

−
1

5

• The density f depends on the derivative of g 



What if only winning bid is observed?

• For instance in a Dutch auction

• CDF of winning bid is simply:

𝐺𝑊 𝑏 = 𝐺 𝑏 𝑁 ⇒ 𝐺 𝑏 = 𝐺𝑊 𝑏
1
𝑁

• Hence, densities are related as:

𝑔 𝑏 =
1

𝑁
𝑔𝑊 𝑏 𝐺𝑊 𝑏

1
𝑁−1

• Thus 𝐺 and 𝑔 are identified from 𝐺𝑊 and 𝑔𝑊
• Hence, can apply previous argument and identify 𝐹 and 𝑓



What if only winning bid is observed?

• Alternatively, we can identify value of winner as:

𝑣𝑊 = 𝑏𝑊 +
1

𝑁 − 1

𝐺 𝑏𝑊
𝑔 𝑏𝑊

= 𝑏𝑊 +
𝑁

𝑁 − 1

𝐺𝑊 𝑏𝑊
𝑔𝑊 𝑏𝑊

• Thus we can identify distribution of highest value 𝐹𝑊 and 𝑓𝑊

• Subsequently, use F 𝑣 = 𝐹𝑊 𝑣
1

𝑁 and 𝑓 𝑣 =
1

𝑁
𝑓𝑊 𝑣 𝐹𝑊 𝑣

1

𝑁
−1

to identify 𝐹 and 𝑓

• This also gives an estimation strategy (two-stage estimator, similar to 
case when all bids observed)



Notable Literature

• [Athey-Haile’02] 
• Identification in more complex than independent private values setting. 
• Primarily second price and ascending auctions
• Mostly, winning price and bidder is observed
• Most results in IPV or Common Value model

• [Haile-Tamer’03]
• Incomplete data and partial identification
• Prime example: ascending auction with large bid increments
• Provides upper and lower bounds on the value distribution from necessary 

equilibrium conditions

• [Paarsch-Hong’06]
• Complete treatment of structural estimation in auctions and literature review
• Mostly presented in the IPV model



Main Take-Aways

• Closed form solutions of equilibrium bid functions in auctions 

• Allows for non-parametric identification of unobserved value 
distribution

• Easy two-stage estimation strategy (similar to discrete incomplete 
information games)

• Estimation and Identification robust to what information is observed 
(winning bid, winning price)

• Typically rates for estimating density of value distribution are very 
slow



Algorithmic Game Theory and 
Econometrics
Mechanism Design for Inference

Econometrics for Learning Agents



Mechanism Design for Data Science

• Aim to identify a class of auctions such that:
• By observing bids from the equilibrium of one auction

• Inference on the equilibrium revenue on any other auction in the class is easy

• Class contains auctions with high revenue as compared to optimal auction

• Class analyzed: Rank-Based Auctions
• Position auction with weights 𝑤1 ≥ ⋯ ≥ 𝑤𝑁 ≥ 𝑤𝑁+1 = 0

• Bidders are allocated randomly to positions based only the relative rank of their bid

• k-th highest bidder gets allocation 𝑥𝑘
• Pays first price: 𝑥𝑘𝑏𝑘
• Feasibility: σ𝑖=1

𝜏 𝑥𝑖 ≤ σ𝑖=1
𝜏 𝑤𝑖

• For “regular” distributions, best rank-based auction is 2-approx. to optimal

[Chawla-Hartline-Nekipelov’14]



Optimizing over Rank-Based Auctions

• Every rank-based auction can be viewed as a new position auction 
with weights: ഥ𝑤𝑖 satisfying σ𝑖=1

𝜏 ഥ𝑤𝑖 ≤ σ𝑖=1
𝜏 𝑤𝑖

• Thus auctioneer’s optimization is over such modifications to the 
setting

• Each of these auctions is equivalent to running a mixture of k-unit 
auctions, where k-th unit auction run w.p. 𝑝𝑘 = ഥ𝑤𝑘 − ഥ𝑤𝑘+1

• To calculate revenue of any rank based auction, suffices to calculate 
expected revenue 𝑅𝑘 of each k-th unit auction

Main question. Estimation rates of quantity 𝑅𝑘 when observing bids 
from a given rank-based auction

[Chawla-Hartline-Nekipelov’14]



Estimation analysis

• Similar to the FPA equilibrium characterization used by [GPV’00]

• As always, write everything in quantile space

• With a twist: 𝑞 = 𝐹(𝑣)

• At symmetric equilibrium 𝑠(⋅):
𝑏(𝑞) = argmax

𝑧
𝑣(𝑞) − 𝑧 𝑥 𝑏−1 𝑧

• FOC:

𝑣 𝑞 = 𝑏 𝑞 +
𝑏′ 𝑞 𝑥 𝑞

𝑥′(𝑞)
• 𝑥 𝑞 and 𝑥′(𝑞) are known from the rules of the auction

[Chawla-Hartline-Nekipelov’14]



Estimation

• Need to estimate 𝑏(𝑞) and 𝑏′(𝑞) if we want to estimate 𝑣(𝑞)

• Compared to [GPV’00]:
• 𝑣 𝑞 = 𝐹−1(𝑞)

• 𝑏 𝑞 = 𝐺−1(𝑞), 𝑏′ 𝑞 =
1

𝑔 𝐺−1 𝑞

• Estimating 𝑣 𝑞 , 𝑏 𝑞 , 𝑏′ 𝑞 the same as estimating 𝐹, 𝐺, 𝑔

• Main message. The quantity 𝑅𝑘 for any 𝑘 depends only on 𝑏 𝑞 and 
not on 𝑏′ 𝑞 ! Leads to much faster rates. 

[Chawla-Hartline-Nekipelov’14]



Fast Convergence for Counterfactual 
Revenue
• The per agent revenue of a k-unit auction can be written as:

𝐸 𝑅 𝑞 𝑥𝑘
′ 𝑞

• 𝑅 𝑞 = 𝑣 𝑞 1 − 𝑞 : single buyer revenue from price 𝑣 𝑞

• 𝑥𝑘(𝑞): probability player with quantile 𝑞 is among 𝑘-highest

• Remember 𝑣 𝑞 = 𝑏 𝑞 +
𝑏′ 𝑞 𝑥 𝑞

𝑥′(𝑞)

• Dependence on 𝑏′ 𝑞 is of the form:

𝐸 𝑏′ 𝑞
𝑥 𝑞 1 − 𝑞 𝑥𝑘

′ 𝑞

𝑥′ 𝑞

• Integrating by parts:

𝐸 𝑏 𝑞
𝑥 𝑞 1 − 𝑞 𝑥𝑘

′ 𝑞

𝑥′ 𝑞

′

which depends only on 𝑏(𝑞) and on “exactly” known quantities

Yields 𝑂
1

𝑁
convergence* of 

MSE, since 𝑏(𝑞) is essentially a 
CDF inverted 

*Exact convergence depends 
inversely on 𝑥′ 𝑞

Need to restrict to rank-based 
auctions where 𝑥′ 𝑞 > 𝜖 (e.g. 
mixing each k-unit auction with 

probability 𝜖/𝑛)

[Chawla-Hartline-Nekipelov’14]



Take-away points

• By isolating mechanism design to rank based auctions, we achieve:
• Constant approximation to the optimal revenue within the class

• Estimation rates of revenue of each auction in the class of 𝑂 𝑁

• Allows for easy adaptation of mechanism to past history of bids

• [Chawla et al. EC’16]: allows for A/B testing among auctions and for a 
universal B test! (+improved rates)

[Chawla-Hartline-Nekipelov’14]



Econometrics for Learning Agents

• Analyze repeated strategic interactions

• Finite horizon 𝑡 ∈ 1, … , 𝑇

• Players are learning over time

• Unlike stationary equilibrium, or stationary MPE, or static game

• Use no-regret notion of learning behavior:

∀𝑎𝑖
′: ෍

𝑡

𝜋𝑖(𝑎𝑖
𝑡, 𝑎−𝑖

𝑡 ; 𝜃) ≥෍

𝑡

𝜋𝑖 𝑎𝑖
′, 𝑎−𝑖

𝑡 ; 𝜃 − 𝜖

[Nekipelov-Syrgkanis-Tardos’15]



High-level approach

If we assume 𝜖 regret 

For all 𝑎𝑖
′:

1

𝑇
෍

𝑡

𝜋𝑖 𝒂
𝒕; 𝜽 ≥

1

𝑇
෍

𝑡

𝜋𝑖 𝑎𝑖
′, 𝒂−𝒊

𝒕 ; 𝜽 − 𝜖

• Inequalities that unobserved 𝜽 must satisfy 

• Varying 𝝐 we get the rationalizable set 

of parameters

Current average utility Average deviating utility 
from fixed action

Regret

𝜽

𝝐

𝜖′

𝜖

𝜖′′

rationalizable set

[Nekipelov-Syrgkanis-Tardos’15]



Application: Online Ad Auction setting

• Each player has value-per-click 𝑣𝑖
• Bidders ranked according to a scoring rule

• Number of clicks and cost depends on 
position

• Quasi-linear utility

𝜋𝑖 𝒃; 𝒗𝒊 = 𝒗𝒊 ⋅ 𝑥𝑖 𝒃 − 𝑝𝑖 𝒃

Expected click probability

Expected PaymentValue-Per-Click

[Nekipelov-Syrgkanis-Tardos’15]



Main Take-Aways of Econometric Approach

• Rationalizable set is convex

• Support function representation of convex set depends on a one dimensional 
function

• Can apply one-dimensional non-parametric regression rates

• Avoids complicated set-inference approaches

Comparison with prior econometric approaches:

• Behavioral learning model computable in poly-time by players

• Models error in decision making as unknown parameter rather than profit shock 
with known distribution

• Much simpler estimation approach than prior repeated game results

• Can handle non-stationary behavior

[Nekipelov-Syrgkanis-Tardos’15]



Potential Points of Interaction with 
Econometric Theory
• Inference for objectives (e.g. welfare, revenue, etc.) + combine with 

approximation bounds (see e.g. Chawla et al’14-16, Hoy et al.’15, Liu-
Nekipelov-Park’16,Coey et al.’16)

• Computational complexity of proposed econometric methods, 
computationally efficient alternative estimation approaches

• Game structures that we have studied exhaustively in theory (routing 
games, simple auctions)

• Game models with combinatorial flavor (e.g. combinatorial auctions)

• Computational learning theory and online learning theory techniques for 
econometrics

• Finite sample estimation error analysis



AGT+Data Science

• Large scale mechanism design and game theoretic analysis needs to 
be data-driven

• Learning good mechanisms from data

• Inferring game properties from data

• Designing mechanisms for good inference

• Testing our game theoretic models in practice (e.g. Nisan-Noti’16)
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