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ABSTRACT
We study an optimal contest design problem where contributors

abilities are private, their costs are convex as a function of their

e�ort, and the designer seeks to maximize their total e�ort. We

address the design of approximately optimal mechanisms that are

robust in that they are independent of the ability distribution and

the precise form of the cost function. We show that a very simple

all-pay contest where the prize is distributed equally among the top

quartile of contributors is always a constant factor approximation

to the optimal for a large class of convex cost functions, when the

number of contributors is larger than some constant. �is result

stands in contrast to contests with linear costs, where awarding a

prize to a single top contributor is approximately-optimal; when

costs are convex, this la�er allocation is far from optimal. Our result

is enabled by novel results in the space of optimal mechanism design

with convex costs, which could be of independent interest. Finally,

we validate the performance of our approximately-optimal contests

via simulation experiments, and portray much be�er empirical

performance than the worst-case guarantees.
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1 INTRODUCTION
�e Net�ix challenge was a contest in which Net�ix solicited predic-

tion algorithms from the general public, and promised a $1 million

prize to any team whose accuracy exceeded their own by at least

10%. Such crowdsourcing contests have become prevalent in the

web economy: Kaggle competitions, user-generated content, and

Topcoder are all examples of crowdsourced contests. As the host’s

objective usually depends on the quality of the contributions, an ob-

vious question arises: how to design contests that spur the greatest

innovation among potential contributors. Although a problem of

this nature was �rst posed by Francis Galton in 1902, the prevalence

of contests on the web has given rise to a long line of recent work

at the intersection of computer science and economics addressing

the optimal design of contests [3, 9, 11, 12, 14–17, 20].
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Starting from a seminal work in the economics literature [22],

typical models of contest design formulate a game in which a prize

is to be distributed to participants based on the quality of their

contributions. �is level of quality is a strategic decision, and the

participants incur costs (in the form of requisite e�ort) that depend

on this choice. Participants also have private abilities, which o�set

their costs: i.e., more talented participants can produce the same

quality contribution with less e�ort. �e goal of each participant,

then, is to maximize their share of the prize by making a worthy

contribution, while simultaneously minimizing their e�orts/costs;

their utility is the di�erence between these two quantities.

Much of the existing work on optimal contest design assumes

either that participants have essentially the same ability
1

[14–17],

or that cost is a linear function of the quality of a contribution

[3, 9, 11, 20].
2

However, the e�ort required to construct a high

quality contribution naturally increases in a nonlinear fashion. It is

easy to design a cookie-cu�er solution; it is much harder to produce

an original design. �e famous 80/20 rule, which states that “20%

of the work gets you 80% of the way there,” captures this nonlinear-

ity. In other words, e�ort is o�en characterized by (signi�cantly)

diminishing returns. �e di�culty in addressing contest design

with both nonlinear costs and participants of heterogeneous abil-

ity hinges on the fact that the combination of these two elements

equates the contest design problem to that of mechanism design

with non quasi-linear utility functions. Hence, unlike the case of

linear costs, standard results from Myerson’s theory of optimal

mechanism design [23] are not fully available.

In this work, we address optimal contest design with convex

costs and heterogeneous participant abilities drawn from some

prior distribution. Moreover, following the recent literature on

prior free mechanism design [19, 25], we strive for contests that do

not depend on the prior distribution over abilities, or the details

of the cost function. Our goal is to design simple approximately-

optimal contests that are independent these details of the se�ing.

We work with the general model presented in the classic work

of Moldovanu and Sela [22]. In particular, the goal of the designer

is to maximize the sum of the participants’ contribution qualities,

each of which has a cost for contributing p of the form c (p)/v ,

where v is an ability and c is a convex function. If a participant

wins a prize of x , then their overall utility is u (x ,p;v ) = x − c (p)/v .

Despite de�ning this general model, [22] obtain optimality or near

optimality results only in the case of linear costs. For convex costs,

they analyze mechanisms that can distribute the prize to at most

two contributors, in which case they state conditions under which

1
Equivalently, they are unaware of their ability at the time of the contribution quality

decision.

2
Other work analyzes the equilibrium and performance properties of various �xed

contest mechanisms [12].
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allocating only to top contributors is optimal. However, for convex

costs, allocating to only a few contributors can be very suboptimal.
3

Contributions. Our main result is to show that a simple contest

which distributes the prize equally among the top quartile of con-

tributors achieves a constant factor approximation for a large class

of distributions of abilities (bounded Monotone-Hazard-Rate dis-

tributions) and for the class of convex cost functions of the form

c (p) = pd , where d ≥ 2 is a measure of convexity, when the number

of contributors is larger than a constant.

Our results are enabled by a simulation theorem (which holds

for all convex cost functions) whereby the outcome of a direct

mechanism—where the designer elicits the private abilities of the

players and then decides (on their behalf) how much each one

should contribute and how much each one will be allocated—can

be implemented as the Bayes-Nash equilibrium (BNE) of a contest

where the participants choose their own contribution qualities.

�is simulation theorem, together with the relevation principle,

establishes an equivalence between optimal mechanism design and

optimal contest design. �ere are two main implications of this

equivalence:

(1) It points to the di�culty of optimal contest design with convex

costs, as it is an instance of optimal mechanism design with non

quasi-linear utilities. Consequently, although our main results

hinge on a very speci�c form of monomial cost functions, the

di�culty of taking even this step should be apparent.

(2) It shows that restricting to contests does not require that a

designer accept any sacri�ce in performance (assuming they are

willing to accept BNE implementation). Even if the designer were to

try to devise some more complex mechanism, any such mechanism

is implementable by a direct mechanism by the revelation principle,

and any direct mechanism is implementable as a BNE of a contest

by our simulation theorem. Hence, the total expected contributions

of any indirect mechanism is achievable at a BNE of some contest.

Given this simulation theorem, we restrict our a�ention to di-

rect mechanisms. As already noted, Myerson’s theory of optimal

mechanism design is not fully applicable in our convex-cost model.

Hence, we begin by deriving an upper bound on the total expected

contributions achievable by a direct mechanism. Subsequently, we

analyze a simple class of threshold mechanisms, where the prize

is equally divided among all contributors whose ability surpasses

some threshold. We show that very simple thresholds, including

the median of the ability distribution as well as a randomly sampled

ability, achieve a constant factor approximation to our upper bound

on the optimal, and hence the optimal.

We then show that when the number of contributors is larger

than a constant,
4

an approximately-optimal threshold mechanism

can be well approximated (at the loss of an extra constant factor)

by a contest that awards the prize to a carefully chosen top fraction

of contributors. For instance, awarding equally the top half of

contributors is very close to the threshold mechanism that awards

to all contributors whose ability is above the median; likewise,

for other quantiles of the ability distribution. �is observation

3
In the full version, we present a concrete example where the ine�ciency of a winner-

takes-all contest grows with the number of players.

4
Which depends logarithmically on the ratio between the upper bound and the median

of the ability distribution.

allows us to establish our main result: that allocating to the top

quartile of contributors is a constant factor approximation to the

optimal contest. We note, once again, that the �avor of this result is

quite di�erent from that of the linear-cost model, where a “winner-

take-all” design (i.e., allocating only to top contributors) is optimal.

When costs are convex, it is preferable to incentivize additional

e�ort from multiple participants, rather than only from those of

the greatest ability.

We conclude by evaluating the performance of the proposed

contests via simulation experiments. We show that the top quartile

contest and other more re�ned contests whose thresholds depend

on the degree of convexity of the cost function perform signi�cantly

be�er on average than the worse case bound of our theorems.

Our results also have implications for revenue maximization

with non quasilinear utilities [1, 7, 13, 18, 21, 24]. One implication

is a prior-free approximately-optimal mechanism for revenue max-

imization, assuming our form of utility functions, which could be

of independent interest in the revenue maximization literature.

2 ALL-PAY CONTEST MODEL
We consider a contest model, which we dub an “all-pay” contest

model, because it can be understood as an all-pay simultaneous

reverse auction. In this model, a contest designer has one unit

of prize money to award to a set of n contributors/players. Each

player i ∈ N = {1, . . . ,n} has a private ability value vi , drawn

independently from an atomless distribution F , with continuous

probability density f that is strictly positive on the support, which

is the closed interval T = [0, v̄]. We write v = (v1, . . . ,vn ) ∈ T
n

to denote a sample ability vector, drawn from distribution Fn .

Conditional on their ability, each player i chooses a quality/level

of contribution bi ∈ R
n

, which herea�er we refer to solely as

contribution. To contribute bi , player i incurs a cost ci (bi )/vi ,
where ci : R≥0 → R≥0 is an increasing continuous convex cost

function with c (0) = 0. Given a vector of contribution qualities

b = (b1, . . . ,bn ) ∈ R
n

the designer then chooses an allocation of

the prize, x (b ) ∈ [0, 1]
n

, such that

∑
i ∈N x (b ) = 1. Player i’s utility

is the prize awarded less the cost incurred:

ui (bi , b−i ;vi ) = xi (bi , b−i ) − ci (bi ) /vi . (1)

For vectors such as b , we use the notation b = (bi ,b−i ) to distin-

guish between player i’s role in the contest and all others N \ {i}.

Solution concept. We assume each player chooses a contribution

in such a way as to maximize their expected utility conditional on

their own ability and in expectation over their opponents’ abilities.

Formally, a vector of functions b (v ) = (bi (vi ), . . . ,bn (vn )) is a

Bayes-Nash equilibrium (BNE) if: ∀i ∈ N , ∀vi ∈ [0, v̄], ∀b ′i ∈ R≥0

E
v−i

[ui (bi (vi ), b−i (v−i );vi )] ≥ Ev−i

[
ui (b

′
i , b−i (v−i );vi )

]
(2)

Designer objective. �e goal of the contest designer is to de-

sign a prize allocation rule so as to maximize total expected
contributions at the BNE of the resulting all-pay contest, i.e.:

Ev [

∑
i ∈N bi (vi )].

Utility transformation. For technical reasons, it is convenient to

translate the above contest model to a mathematically equivalent
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one, where players have utility of the form:

ui (bi , b−i ;vi ) = vixi (bi , b−i ) − ci (bi ) . (3)

Since players maximize utility conditional on their ability, maxi-

mizing the utility in Equation (1) is equivalent to maximizing the

utility in Equation (4), which is simply the former multiplied by vi .
�is la�er form of utilities is more convenient because it allows

us to interpret the se�ing in the forward direction, where player

i has value vi per-unit of good (prize) and incurs a cost that is

a function of his payment (contribution) bi . We can then make

use the extensive toolbox developed in the revenue maximization

literature. �is utility transformation approach was also used in

prior work on contests with linear costs [9, 11, 20].

Direct Mechanisms. By the classic revelation principle [23], an

all-pay contest is outcome equivalent (i.e., induces the same con-

tribution from each player, conditional on his value, and the same

allocation of prizes) to what is known as a direct mechanism. In a

direct mechanism, the designer elicits the private information of

the participants directly, which in our se�ing is an ability report

wi ∈ T from each player i .
Given a vector of reports w = (w1, . . . ,wn ) ∈ R

n
, for all i ∈ N , a

mechanism is de�ned by an allocation rule x (w) ∈ [0, 1]
n

, such that∑
i ∈N xi (w) = 1, together with a contribution rule p (w) ∈ Rn

≥0
,

that speci�es the contribution pi (w) that is required of each player

i . �e utility of each player i is then:

ui (wi ,w−i ;vi ) = vixi (wi ,w−i ) − ci (pi (wi ,w−i )) , (4)

For readability, we o�en write ci (wi ,w−i ) instead of ci (pi (wi ,w−i )).
�is is player i’s cost, which depends on their contribution pi (w).
Similar to the contribution rule, we refer to c (w) ∈ Rn

≥0
, comprised

of ci (wi ,w−i )’s, as the cost rule of the direct mechanism.

Given a direct mechanism, we de�ne the interim allocation,

interim contribution and interim cost rules, respectively as:

x̂ i (wi ) = Ev−i [xi (wi , v−i )], p̂i (wi ) = Ev−i [pi (wi , v−i )] and ĉi (wi ) =
Ev−i [ci (wi , v−i )]. �ese variables comprise each player’s expected

allocation, contribution, and cost as a function of their report, as-

suming all the other players report their abilities truthfully.

We call a mechanism Bayesian incentive compatible (BIC)

if utility is maximized by truthful reports in expectation: ∀i ∈ N
and ∀vi ,wi ∈ T , vi x̂ i (vi ) − ĉi (vi ) ≥ vi x̂ i (wi ) − ĉi (wi ). Interim
individual rationality (IIR) insists on non-negative utilities in

expectation: ∀i ∈ N and ∀vi ∈ T , vi x̂ i (vi ) − ĉi (vi ) ≥ 0.

�e goal of the designer is to �nd a BIC and IIR mechanism

that maximizes total expected contributions, which is de�ned

as Ev [

∑
i ∈N pi (v )] =

∑
i ∈N Evi [p̂i (vi )].

Lemma 2.1 (Application of the Revelation Principle). �e
total expected contributions achieveable by an all-pay contest at some
BNE can also be achieved by a direct BIC/IIR mechanism.

�is lemma follows from the well-known revelation principle, so

its proof is omi�ed. Intuitively, the allocation and contribution rule

of the direct mechanism will simulate the allocation and payment

rules speci�ed by the BNE of the all-pay contest, and it will be BIC

and IIR since it is simulating a BNE. More interestingly, in the next

section, we show that the other direction also holds, so that the

total expected contributions of any direct mechanism that is BIC

and IIR can be achieved as a BNE of an all-pay contest. In this way,

we establish an equivalence between optimal direct mechanisms

and optimal all-pay contests.

Characterization of Direct Mechanisms. Myerson [23] showed

that for a mechanism to satisfy BIC and IIR, several conditions

need to hold. Among them, a speci�c cost formula must be used.

We restate his result below, adapted to our se�ing. For simplicity,

we assume the utility of reporting an ability of zero is zero: i.e.,

ui (0, b−i ) = 0 for all i ∈ N , as is the case for all our mechanisms.

Lemma 2.2 ([23]). A mechanism is BIC and IIR if and only if the
following conditions hold:
• �e allocation rule is monotone:

x̂ i (vi ) ≥ x̂ i (wi ), ∀i ∈ N ,∀vi ≥ wi ∈ T , (5)

• Interim costs satisfy the following condition:

vi x̂ i (vi ) − ĉi (vi ) =

∫ vi

0

x̂ i (zi ) dzi , ∀i ∈ N ,∀vi ∈ T , (6)

Moreover, the total expected cost of such a mechanism can be

described using a virtual value function φi , de�ned as follows:

φi (vi ) = vi −
1 − Fi (vi )

fi (vi )
. (7)

Theorem 2.3 ([23]). �e total expected costs incurred by partici-
pants in a BIC and IIR mechanism satis�es:∑

i ∈N
E

vi∼Fi
[ĉi (vi )] =

∑
i ∈N

E
vi∼Fi

[φi (vi )x̂ i (vi )] (8)

In the traditional quasi-linear se�ing, where the cost function

is the identity function, Myerson’s theorem tells us that expected

virtual surplus is equivalent to total expected contributions. From

this result and the forthcoming simulation theorem, we can deduce

that, to maximize contributions, the prize should be allocated to

the players with the highest non-negative virtual values. However,

in the convex cost se�ing, Myerson’s lemma does not pin down

the interim contributions of the players; only their interim costs.

Hence the virtual value characterization theorem does not shed

much light on the optimal mechanism.

3 BNE OF ALL-PAY CONTESTS ARE OPTIMAL
In this section, we present our simulation theorem, a converse to the

application of the revelation principle presented above: i.e., the total

expected contributions achievable by a BIC/IIR direct mechanism

are also achievable as a BNE of some all-pay contest.

Before we can prove this claim, we �rst prove a lemma that allows

us to make a connection between the interim cost and the interim

contribution of a player in any optimal BIC/IIR direct mechanism.

Concretely, we show that for all contribution rules pi (v ) that might

be dependent on v−i , there exists a corresponding contribution

rule hi (vi ) that is independent of v−i , and that achieves at least as

high (quality) total expected contributions.

Consider a randomized direct mechanism, Mechanism A, where

pAi (vi , v−i , r ) denotes player i’s contribution in Mechanism A and

r is the outcome of some randomization device. We de�ne an-

other direct mechanism, Mechanism B, with contribution rule

pBi (vi , v−i , r ) = c−1

i

(
Ev−i ,r

[
ci

(
pAi (vi , v−i , r )

)] )
. We abbreviate

the la�er by hi (vi ), and note that it depends only on vi .
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Lemma 3.1. An arbitrary allocation rule x, together with the cor-
responding contribution rule p̂A or p̂B , satis�es BIC and IIR for Mech-
anism A if and only if it satis�es BIC and IIR for Mechanism B.
Moreover, Mechanism B’s total expected contributions are at least
that of Mechanism A’s.

Proof. We begin with the �rst part. Observe that the proposed

contribution rule preserves interim player costs, and hence, utilities.

More concretely:

ĉBi (vi ) = Ev−i ,r

[
ci

(
pBi (vi , v−i , r )

)]
= ci (hi (vi ))

=ci

(
c−1

i

(
E

v−i ,r

[
ci

(
pAi (vi , v−i , r )

)]))
= ĉAi (vi ).

Hence, for all players i ∈ N and abilities vi ,wi ∈ T , vi x̂ i (vi ) −
ĉBi (vi ) ≥ vi x̂ i (wi ) − ĉBi (wi ) i� vi x̂ i (vi ) − ĉAi (vi ) ≥ vi x̂ i (wi ) −

ĉAi (wi ) and vi x̂ i (vi ) − ĉ
B
i (vi ) ≥ 0 i� vi x̂ i (vi ) − ĉ

A
i (vi ) ≥ 0.

Now we prove the second part. Since ci (·) is convex, by Jensen’s

inequality,

hi (vi ) =c
−1

i

(
E

v−i ,r

[
ci

(
pAi (vi , v−i , r )

)])
≥ E

v−i ,r

[
c−1

i

(
ci

(
pAi (vi , v−i , r )

))]
= E

v−i ,r

[
pAi (vi , v−i , r )

]
.

In other words, the contributions in Mechanism B can only exceed

those of Mechanism A. �erefore, the total expected contributions

of Mechanism B is at least that of Mechanism A. �

�is lemma immediately implies, that in our search for an optimal

direct mechanism, it su�ces to restrict our a�ention to mechanisms

like Mechanism B, in which the contribution of each player i is a

(deterministic) function his ability alone:

Corollary 3.2. For any optimal direct mechanism that is BIC
and IIR, there exists a corresponding mechanism that achieves at least
as high (quality) total expected contributions, where each player’s
contribution is a deterministic function of only his value, given by:
∀i ∈ N ,∀vi ∈ T ,

hi (vi ) = c
−1

i (ĉi (vi )) = c
−1

i

(
vi x̂ i (vi ) −

∫ vi

0

x̂ i (zi ) dzi

)
. (9)

�is corollary also allows us to prove our promised simulation

theorem, namely that there always exists an all-pay contest and an

associated BNE that achieves the total expected contributions of

the optimal (BIC and IIR) direct mechanism.

Theorem 3.3 (All-Pay Contest Optimality). For any optimal
direct mechanism that is BIC and IIR, there exists an all-pay contest
with a corresponding BNE that achieves the total expected contribu-
tions of the optimal direct mechanism.

We will see later (cf. Lemma 7.1) that Equation (9) leads to an easy

calculation of the contributions of the optimal direct mechanism and

thereby also the optimal all-pay contest, by �eorem 3.3. However,

this connection still does not lead to a clean characterization of the

optimal mechanism, which is the outcome of a convex optimization

problem, and can be arbitrarily complex. Working towards our main

theorem, we propose simple mechanisms that are approximately

optimal in Section 5. To establish their approximation ratios, we

�rst prove an upper bound on the total expected contributions of

the optimal contest.

4 UPPER BOUND ON OPTIMAL
We �rst prove an upper bound on the total expected contributions

of the optimal mechanism solely based on the IIR property. We �rst

invoke a simple argument from [18] that in the case of a symmetric

se�ing, i.e. cost functions ci (·) and distributions of abilities are the

same for all players, the optimal mechanism must be symmetric.

Lemma 4.1 ([18]). If all cost functions ci (·) are the same and player
ability distributions are identical, then there exists an optimal BIC
and IIR mechanism that is symmetric across players.

Theorem 4.2. If, ∀i ∈ N , ci (bi ) = bdi , then OPT ≤ n
( µ
n

)
1/d

,
for d ≥ 2.

Proof. By Lemma 4.1 it su�ces to look at symmetric mech-

anisms across players. Moreover, by Corollary 3.2, it su�ces to

upper bound the expected contributions of a mechanism whose

contribution rule is of the form given in Equation (9) (observe that

crucially Lemma 3.1 preserves symmetry of the original mecha-

nism when costs and distributions of abilities are identical across

players). Hence, it su�ces to look at symmetric mechanisms whose

contribution rule is only a function of the player’s ability. For any

such mechanism, we have that by IIR:

hi (vi ) ≤ c−1

i (vi x̂ i (vi )) = v
1/d
i x̂ i (vi )

1/d
(10)

�us the expected contribution of a player is upper bounded by:

E
vi

[hi (vi )] ≤ Evi

[
v1/d
i x̂ i (vi )

1/d
]

(11)

By Cauchy-Schwarz inequality:

E
vi

[
v1/d
i x̂ i (vi ))

1/d
]
≤

√
E
vi

[
v2/d
i

]√
E
vi

[
x̂ i (vi )2/d

]
(12)

When d ≥ 2, the function x2/d
is concave for x ≥ 0. Hence, by

Jensen’s inequality:

E
vi

[
v2/d
i

]
≤ E

vi
[vi ]

2/d = µ2/d
(13)

E
vi

[
x̂ i (vi )

2/d
]
≤ E

vi
[x̂ i (vi )]

2/d
(14)

By symmetry of the mechanism we have that ∀i : Evi [x̂ i (vi )] = κ,

for some constant κ. By feasibility, then we have κ = 1/n, since∑
i Evi [x̂ i (vi )] = Ev [

∑
i x (v )] = 1. Combining all the above we

have:

E
vi

[hi (vi )] ≤ µ
1/d 1

n1/d
(15)

�e theorem follows since OPT =
∑
i Evi [hi (vi )]. �

Further Re�nement for MHR Distributions. We conclude this sec-

tion by providing a more useful upper bound on the optimal contri-

butions for the case of Monotone Hazard Rate (MHR) distributions.

To do so, we introduce some useful notation and terminology with

respect to properties of the distribution F . For any distribution F ,

let q (v ) = 1 − F (v ) be the quantile function, and let v (q ) = q−1 (·)
be the inverse quantile function. In words, the quantile of an ability

v is the probability that a random draw from F exceeds v . Observe

that quantiles are distributed uniformly on [0, 1]. We will also

denote by κ = v (1/2) the median of the distribution.

In the usual quasi-linear se�ing, the revenue function R (q )
associated with F is de�ned as R (q ) = v (q )q = v (q ) (1 − F (v (q )).
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Intuitively, this is the expected revenue of a seller who posts a

reserve price of v (q ) (i.e., one that is surpassed with probability q ).

Since, F is atomless with support [0, v̄], R (0) = R (1) = 0.

We will be looking at two standard classes of distributions.

�e smaller class is that of monotone hazard rate (MHR) distri-

butions, which require that h(v ) = f (v )/(1 − F (v )) be monotone

non-decreasing. �e larger class is that of regular distributions,

which require that R (q) be a concave function, or equivalently

ϕ (v (q)) = R′(q) = v (q)−
1−F (v (q ))
f (v (q )) , be monotone decreasing. Since

ϕ (v (q)) = v (q) − 1

h (v (q )) , it is easy to see that an MHR distribu-

tion is also regular. MHR distributions contain several well-known

families, such as the uniform and the exponential (see e.g. [4]).

We now state two lemmas describing bounds on revenue curves,

depending on the assumptions made on the ability distributions.

Lemma 4.3 ([10, 26]). For any regular distribution, R (q∗) ≤ κ. For
any MHR distribution, R (q∗) ≥ µ

e .

�is lemma implies that for MHR distributions: µ ≤ eR (q∗) ≤ eκ.

Combining this result with �eorem 4.2, we conclude:

Corollary 4.4. If the ability distribution F is an MHR distribution

then, OPT ≤ n
(
eκ
n

)
1/d

.

5 QUANTILE THRESHOLD MECHANISMS
We now turn to the design of simple detail-free mechanisms and

contests. We begin our analysis by looking at quantile threshold
mechanisms, i.e., mechanisms that distribute the prize uniformly

among all players whose ability vi is above some ability threshold

r , or equivalently, to players whose quantile qi is below some

quantile threshold q̂ . In these mechanisms, the player is asked

to contribute based on the characterization in Equation (9), which

renders the mechanism BIC and IIR. In the case of quantile threshold

mechanisms, this contribution takes the simple form:

hi (vi ) = c
−1

i
*
,
v (q̂)1vi ≥v (q̂ ) Ev−i



1

1 +
∑
j,i 1vj ≥v (q̂ )


+
-

(16)

All-pay implementation. By the same argument as in �eorem 3.3,

a quantile threshold mechanism with quantile q̂ can be implemented

as an all-pay contest. In fact, for quantile threshold mechanisms,

this contest has a simple form. We omit the proof of the following

lemma, since it is similar to that of �eorem 3.3.

Lemma 5.1 (Contest Implementation of�antile Threshold

Mechanism). Consider an all-pay contest that distributes the prize
uniformly to all players i who contribute bi above:

b∗i = c
−1

i
*
,
v (q̂ ) E

v−i



1

1 +
∑
j,i 1vj ≥v (q̂ )


+
-
. (17)

�ere exists a BNE of this all-pay contest that implements the same
contributions as a quantile threshold mechanism with threshold q̂ .

When all players have the same cost function, and abilities are

drawn from indepdendent and identical distributions, then this

all-pay contest sets the same contribution threshold for all players,

and takes an intuitive form that is prevalent in practice (e.g., badge

mechanisms [2]). We also note that this threshold mechanism might

a�ord multiple equilibria, but only one of them implements the

same outcome as the original mechanism. In the next section, we

will construct approximately optimal contests with unique equilib-

ria.

We begin with the analysis of the expected contributions of a

quantile threshold mechanism, with some quantile threshold q̂ , in

the case where players have cost functions of the form bd .

Lemma 5.2. Consider a convex cost of the form ci (b ) = bd , ∀i ∈
N , where d ≥ 1. Let APX(q̂ ) be the expected contributions in a
mechanism that allocates uniformly across all players with quantile
qi ≤ q̂ and requires contributions given by Equation (16). �en:

APX(q̂ ) ≥ n

(
v (q̂)

1 + (n − 1)q̂

)
1/d

q̂ ≥ n1−1/dv (q̂)1/d q̂. (18)

Proof. By the contribution identity (Equation 16), since 1/(1 +
x ) is a convex function, by Jensen’s inequality, and because the

probability that vi ≥ v (q̂) is 1 − F (v (q̂)) = q̂:

hi (vi ) ≥ *
,

v (q̂)1vi ≥v (q̂ )

1 +
∑
j,i Ev j [1vj ≥v (q̂ )]

+
-

1/d

=

(
v (q̂)1vi ≥v (q̂ )

1 + (n − 1)q̂)

)1/d

,

By the de�nition of expected contributions:

APX(q̂ ) =
n∑
i=1

E
vi∼F



(
v (q̂)1vi ≥v (q̂ )

1 + (n − 1)q̂)

)1/d 
=

n∑
i=1

(
v (q̂)

1 + (n − 1)q̂

)
1/d

q̂.

We have thus established the �rst part of the Equation (18). �e

second part follows by noting that q̂ ∈ [0, 1]. �

Detail-free mechanisms. We now show that if the designer has

some knowledge of the distribution of abilities, then mechanisms

can generate more expected contributions than otherwise. Speci�-

cally, knowing the median of the distribution is su�cient for ge�ing

a much be�er approximation ratio. We conclude this section by

providing two examples of detail-free mechanisms that optimize

over the quantile threshold q̂ to obtain be�er approximation ratios.

Theorem 5.3 (Median Threshold). �e approximation ratio of
the mechanism with median ability threshold κ (i.e., q̂ = 1

2
) when,

∀i ∈ N , ci (b ) = bd , where d ≥ 2 with MHR distributions, is:

APX

OPT

≥
1

2

(
2n

e (n + 1)

)
1/d
. (19)

�e median mechanism can be implemented at a BNE of the all-pay
contest which allocates uniformly to all players who contribute above:

b∗ =

(
κ

2 − 2
n−1

n

)1/d

(20)

Proof. Lemma 5.2 tells us that when q̂ = 1

2
,

APX ≥ n

(
κ

1 + (n − 1)/2

)
1/d

1

2

=
n

2

(
2κ

n + 1

)
1/d
,

and by �eorem 4.4,

APX

OPT

≥
n

2

(
2κ

n + 1

)
1/d

1

n(d−1)/d (eκ)1/d
=

1

2

(
2n

e (n + 1)

)
1/d
.
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�e last part of the theorem follows from Lemma 5.1, and by ob-

serving that for a median quantile:

E
v−i



1

1 +
∑
j,i 1vj ≥v (q̂ )


=

1

2
n−1

n−1∑
t=0

(
n − 1

t

)
1

t + 1

=
2 − 2

1−n

n

�

Equation (19) tells us that for a large number of players, the ap-

proximation ratio is
1

2

(
2

e

)
1/d

. Asd ≥ 2, this is at least 0.42. Further,

as d tends towards in�nity, the approximation ratio approaches
1

2
.

Next, we claim that if we use a quantile threshold that is also

dependent on degree of complexity d of the cost function. then

we can further improve the approximation ratio. �e proof and

analysis of this theorem is deferred to Appendix A.2.

Theorem 5.4 (Cost-Optimized Threshold). Assume that the
ability distributions satisfy the Monotone Hazard Rate (MHR) condi-
tion, and that the cost function for each player i ∈ N is of the form
ci (b ) = bd , for d ≥ 2. �en a quantile threshold mechanism with
threshold q̂ = max

{
1

2
, 1 − 1

d−1

}
achieves contributions that are at

least the following fractions of optimal:
(

n
n+1

)
1/d

1

2

√
e
for d ∈ [2, 3)

and
(

n
n+1

)
1/d

1

(4e (d−2))1/d
for d ≥ 3.

Observe that for d → ∞, this bound converges to 1, since (d −

2)1/d → 1. �us, as the payment functions become more convex,

the cost-optimized reserve mechanism converges to full optimality.

Moreover, like the median threshold mechanism, the cost-optimized

threshold mechanism can also be implemented as the BNE of an all-

pay contest with an appropriately chosen contribution threshold.

We have seen that simple contests that allocate the prize uni-

formly to all players who contribute above a certain threshold

achieve a constant factor approximation. Although they are detail-

free, in the sense that they do not require full distributional knowl-

edge, they require some knowledge of the distribution or of the

cost function in order to be implemented. In the next section, we

will completely remove the dependence on the distribution and the

cost function at the expense of only assuming that the number of

contributors is larger than some constant.

Remark 1 (Implications for Revenue Maximization). Before
we move on to our endeavor for robust optimal contests we remark
that the results in this section have implications for the revenue max-
imization problem with non quasi-linear utilities. In particular, if we
replace contributions with payments, then the optimal mechanism
design problem for our se�ing is a revenue maximization problem
where players incur costs that are a convex function of their pay-
ments. Under this interpretation, �eorem 5.3 implies that allocating
uniformly at random to all players whose value is above the median
of the value distribution is a constant approximation to the optimal
revenue. Using similar techniques, we can also show that rather than
choosing the median threshold, choosing as a threshold a value that
is drawn randomly from the value distribution also leads a constant
factor approximation. Notably, this mechanism can be implemented
in a completely prior-free manner, where we use one player as a the
threshold se�er, and allocate uniformly at random to all remaining
players whose value is above the value of this threshold se�er. �is
result is an analogue of the classic result of Bulow and Klemperer [6]

for our se�ing. Finally, all these mechanisms can be implemented in a
manner that renders truthful reporting an ex-post dominant strategy,
rather than simply ensuring that the mechanism is BIC. Due to space
constraints, and since these results are tangential to our main goal,
we defer them to the full version of the paper.

6 MAIN RESULT: PRIOR AND COST
INDEPENDENT CONTEST

In this section we present our main result: an all-pay contest which

is approximately optimal and which does not depend on the distri-

bution of abilities or the degree of convexity d of the cost function.

We will start by drawing intuition from our quantile threshold

mechanisms and their all-pay contest implementations. We saw

that these contests are approximately optimal but are faced with

a di�culty: the appropriate contribution threshold to set in the

contest so that it translates to a target quantile threshold in the

quantile space of abilities is dependent on the exponentd . �erefore,

it seems unlikely that there exists a universal contribution threshold

that would work for all d . A further di�culty stems from the fact

that contests in which the allocation depends on the absolute value

of players’ contributions tend to not have unique equilibria [8, 20].

Given these issues, we instead investigate allocation functions

in which each player’s allocation depends only on the rank of his

contribution relative to those of the other players. �e key idea is

that we can try to approximate the median threshold mechanism

with such a relative ranking mechanism by allocating uniformly

to the top half of the contributors and nothing to the bo�om half.

Assuming that players contribute according to a symmetric Bayes-

Nash equilibrium with a strictly monotone contribution function

b (·) (which is the unique equilibrium based on the results of [8]),

then at equilibrium the contributors whose ability is among the top

50% of abilities will be allocated a prize of 2/n.
5

If the number of contributors is at least some constant, then this

interim allocation function will strongly resemble the interim allo-

cation function of the median threshold mechanism: contributors

with ability strictly above the median ability by some error margin

ϵ will be allocated 2/n with probability approaching 1, while players

whose ability is strictly below the median ability by some error

margin ϵ will get an allocation that is near 0. �ese results follow

from a concentration of measure inequality argument. Hence, this

mechanism will achieve an approximation ratio APX/OPT that is

of the form
1

α −O

(√
log(n)
n

)
, where α is some small constant, since

the median mechanism is approximately optimal.

In order to avoid dependence of our analysis on a lower bound

on the density of the distribution of abilities, we actually propose

a more competitive all-pay contest where we allocate to a smaller

fraction of the contributors. In the theorem that follows we pick

the top quarter, but we note that the constants could be further

optimized by picking a more involved fraction. �e proof of this

theorem appears in Appendix A.3.
6

5
For simplicity, we assume that n is even.

6
We also note that the constants in the analysis of this theorem could be optimized

to obtain a be�er result. For simplicity of exposition we omit such optimization, as

the main point of the theorem is that a constant approximation can be achieved by a

mechanism that is independent of the cost function.



Simple vs Optimal Contests with Convex Costs Conference’17, July 2017, Washington, DC, USA

Finally, we note that if the designer has an idea about the degree

of convexity d of the cost function, then, drawing intuition from

the cost-optimized threshold mechanism, we might expect a less

competitive contest to perform be�er. We revisit this intuition in

the experimental section and indeed show improved performance

of such convexity-tailored contests.

Theorem 6.1 (Main Theorem). Consider an all-pay contest which
allocates the prize uniformly to the top quarter of the contributors,
i.e.: xi (bi , b−i ) = 4

n if bi is among the top n
4
highest contributors.

Assuming that ci (·) is a strictly monotone function, and that it is the
same for all players, and further assuming that the distribution of
abilities is atomless and has a continuous CDF with support [0, v̄],
then at the unique Bayes-Nash equilibrium of this contest, each player
will choose a contribution bi (vi ) such that

bi (vi ) = c
−1

i

(
vi x̂ i (vi ) −

∫ vi
0

x̂ i (zi ) dzi
)
, (21)

where x̂ i is the interim prize allocation that corresponds to awarding
an allocation of 4

n to the n
4
players of highest ability, i.e.,

x̂ i (vi ) =
4

n
Pr

(
vi is among n

4
highest abilities | vi

)
. (22)

Finally, assume that ci (b ) = bd for d ≥ 2, that n ≥ 32 log(16v̄/κ),
and that the distribution of abilities is MHR. �en this contest achieves
expected contributions APX at the unique Bayes-Nash equilibrium,
which satisfy: APX

OPT
≥ 1

16
.

7 EXPERIMENTS
In this section, we provide empirical evidence that our proposed

contests yield near-optimal performance. We �rst show that in a

symmetric se�ing, it is possible to compute the optimal allocation

and contributions in polynomial time. �e characterization makes

use of Border’s theorem [5] to reduce the number of interim feasi-

bility constraints to a manageable size; we refer the reader to [18,

Section 8.5.1] for an elaborate description of this approach. As the

following lemma is an adaptation to our se�ing of the results in

[18], we omit the proof. Intuitively the function z (·) in the program

corresponds to the derivative of the interim allocation rule of the

direct mechanism.

Lemma 7.1. In a symmetric se�ing with convex costs, where values
are drawn from an atom-less regular distribution F with support in
T = [0, 1] and density function f , the contributions of the optimal
contest can be described by the following program:

max

z ( ·)≥0

∫
1

0

f (t ) · c−1

(∫ t
0
τz (τ ) dτ

)
dt (23)

s.t.

∫
1

0

z (τ ) (1 − F (max{t ,τ })) dτ ≤
1 − F (t )n

n
, ∀t ∈ T (24)

Experiments and Results. We conclude this paper with an inves-

tigation of how well our proposed contests perform empirically,

compared to our theoretical guarantees. In particular, we examine

the performance of an all-pay contest that distributes the prize

uniformly to the top quartile of contributors (�eorem 6.1) and the

cost-optimized version of this contest which distributes uniformly

to the top q̂ fraction of contributors for q̂ = max

{
1

2
, 1 − 1

d−1

}
(the

la�er is the relative contribution analogue of the cost-optimized

threshold mechanism of �eorem 5.4). Moreover, we examine the

performance of the less robust but be�er performing contests that

rely on a contribution threshold, namely the all-pay implementa-

tion of the median mechanism 5.3 and the all-pay implementation

of the cost-optimized threshold mechanism 5.4.

To compare these mechanisms, we generated 50 random MHR

distributions (for computational reasons we considered discretized

versions of the distributions). For each distribution, we simulated

10,000 contests, and then computed the average contributions of

each, for each of n = {1, . . . , 300} symmetric players. Each player

had cost ci (b ) = b
d

, for varying d . We computed the mean contri-

butions across distributions as well as the 5% and 95% percentiles of

their performance (i.e., the ratio between the contribution achieved

and the optimal). We summarize the results of the experiments

in Figure 1. In all cases, the experimental results suggest that our

proposed mechanisms may perform much be�er in practice than

our theoretical worst-case guarantees.

8 CONCLUSION
In this work, we studied the problem of optimal contest design,

where the designer’s objective is to maximize the total expected

quality of contributions assuming participants incur convex costs.

�is convex-cost model is a natural model of e�ort, as it takes

more and more e�ort to improve the quality of a contribution as

that quality increases. We began by establishing an equivalence

between all-pay contests and optimal direct mechanisms, in which

players report their values, and are possibly allocated a prize and

asked to contribute some amount. On the other hand, we also noted

that Myerson’s theory of optimal mechanism design is not fully

applicable in our se�ing. Indeed, a closed-form characterizaton of

the optimal BIC/IIR mechanism with convex costs remains open.

Nonetheless, we were able to establish an upper bound on the

optimal, which we used to derive approximation ratios for two

simple and detail-free all-pay contest mechanisms, one of which

allocates the prize uniformly to all players whose ability is above the

median ability (in the direct se�ing). We then noted that the spirit

of the median mechanism can be achieved in the contest se�ing by

allocating the prize uniformly to the top half of the contributors

and nothing to the others. Indeed, our main theorem, for which we

achieve a constant approximation, allocates uniformly at random

to the top quarter of the contributors and nothing to the others.

Our main result stands in stark contrast to the optimal mecha-

nism in the usual quasi-linear se�ing, where no one but the top

contributors are ever allocated any portion of the prize. When costs

are convex, and when the goal is to maximize the total quality of

the contributions (i.e., total productivity), it can be very suboptimal

to allocate only to the top contributors. If we accept the premise

that the behavior of many Americans’ is governed by the 80/20 rule,

our results suggest a possible reason for the recent stagnant/slow

growth in the United States economy, namely that the current

system does not o�er enough incentives to enough participants.

A OMITTED PROOFS
A.1 Proof of Lemma 3.3
Consider a direct mechanism with an ex-post allocation rule xi :

Tn → [0, 1] and a deterministic contribution rule hi : T → R≥0

for each player i . We will implement the direct mechanism as an
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Figure 1: Empirical performance of proposed contests on random MHR distributions. �e �gure on the le� shows the
performance of a contest that allocates to the top 1/4 players; the middle �gure shows the contest that allocates to top
max

{
1

2
, 1 − 1

(d−1)

}
players; and the right �gure shows the threshold contests (�eorems 5.3 and 5.4).

all-pay contest as follows: given the contribution of a player bi , use

the interim contribution rule of the direct mechanism to map it back

to the set of abilities that contribute bi in the direct mechanism,

i.e. Si (bi ) = {wi ∈ T : hi (wi ) = bi }. Since the interim contribution

rule is non-decreasing, the la�er set is an interval [L(bi ),U (bi )]
and moreover these intervals are disjoint for di�erent bi and are

consequtive. If the player submits a contribution that is not in

the range of hi (·), i.e. if Si (bi ) is empty, then we map it to an

ability of 0 and allocate 0 prize. Otherwise, we draw an ability from

distribution F , conditional on the fact that the ability is in Si (bi ), i.e.

if Si (bi ) is a singleton then we return this singleton otherwise we

draw an ability from the distribution with support Si (bi ) and CDF

G (v;bi ) =
F (v )−F (L(bi ))

F (U (bi ))−F (L(bi ))
. Let zi be the resulting ability drawn

from all this process for player i . �en allocate to player i a prize of

xi (z ) based on the ex-post allocation rule of the direct mechanism

for the constructed ability vector z .

We will show that all players contributing bi (vi ) = hi (vi ) is a

BNE of the resulting all-pay contest. �e la�er would imply that

the all-pay contest achieves the same expected contributions as the

direct mechanism.

We �rst note that if all other players bid according to this BNE,

then if a player i is assigned a value zi from the aforementioned pro-

cess, then his interim allocation in the all-pay contestEz−i [xi (zi , z−i )]
(i.e. his expected allocation in expectation over the draws of his

opponents abilities and the randomness of the contest) is equal to

x̂ (zi ), i.e. it is equal to the interim allocation of a player with ability

zi in the original direct mechanism. To argue this we only need to

argue that the distribution of zj for any j , i follows exactly distri-

bution F . �en the claim will follow by the de�nition of the interim

allocation rule x̂ (·) of the direct mechanism. �e fact that each zj
is drawn from F , follows by our construction; the distribution of

the random variable zj is the result of the following process: �rst a

value vj is drawn from F , then a bid bj (vj ) = hj (vj ) is generated.

�en the random variable zj is drawn from the distribution of F con-

strained on the set Sj (hj (vj )). Let us look at the CDF of zj : Consider

a value x ∈ T and let Sj (t ) = [L(t ),U (t )] be the interval containing

x in the partition of abilities de�ned by hj (i.e. the partition of T
such that all abilities in each part make the same contribution under

rule hj (·)). �e probability that zj falls below x is the probability

that the player j has a true ability vj that falls below L(t ), plus the

probability that it falls in interval Sj (t ), times the probability that zj
drawn from distribution F conditional on interval Sj (t ) falls below

x . �e la�er is F (L(t ))+
F (x )−F (L(t ))

F (U (t ))−F (L(t )) (F (U (t ))− F (L(t ))) = F (x ).

�is concludes our claim.

Second, observe that if two abilities wi > vi , have the same

deterministic contribution under hi , i.e. hi (wi ) = hi (vi ), then it

must be that their interim allocations in the direct mechanism are

the same, i.e. x̂ i (wi ) = x̂ i (vi ). �e la�er follows by the strict

monotonicity of the cost functions and the fact that the quantity

inside c−1

i (·) in Equation (9) is strictly larger for ability wi than

for ability vi if x̂ i (wi ) > x̂ i (vi ). Hence, we can conclude that if a

player submits a contribution bi = hi (wi ) in the all-pay contest for

some abilitywi , then no ma�er what was the draw zi of the random

process of the contest, the expected prize allocation of the player

in expectation over the abilities of opponents and the randomness

of the contest, will be equal to x̂ i (wi ).
�us the expected utility of a player with abilityvi , in the all-pay

contest, if he submits a contribution bi = hi (wi ) is equal to the

expected utility of that player in the direct mechanism if he reported

an ability level of wi , i.e. vi x̂ i (wi ) − hi (wi ). �us, by the BIC

condition of the direct mechanism, the player in this all-pay contest

does not want to deviate and contribute the amount that a player

with any other ability would have contributed, since this would be

equivalent to reporting that ability in the direct mechanism. Finally,

a player does not want to submit a contribution bi that is not in

the range of hi (·) since that yields zero utillity. �us each player

contributing bi (vi ) = hi (vi ) is a BNE of the all-pay contest.

A.2 Proof of �eorem 5.4
We will �rst prove a Lemma which is an extension of the simpli�ed

prophet inequality that we used in the previous section.

Lemma A.1. For any regular distribution and for any q̂ ≥ 1/2:

R (q̂) ≥ (1 − q̂)R (q∗) (25)

Proof. First suppose that q∗ ≥ q̂. �en we know that R (q) is

increasing until η and concave. Hence:

R (q̂) ≥
R (q∗) − R (0)

q∗
q̂ + R (0) ≥ R (q∗)q̂ + R (0) (1 − q̂) ≥ R (q∗)q̂
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≥ R (q∗)
1

2

≥ R (q∗) (1 − q̂)

Now suppose that q∗ ≤ q̂. �en R (q) is decreasing in the region

(q∗, 1] and R (1) = 0. �us by concavity of R (q), since q̂ ∈ (q∗, 1]:

R (q̂) ≥
R (q∗) − R (1)

q∗ − 1

(q̂ − 1) + R (1) =
R (q∗)

1 − q∗
(1 − q̂) ≥ R (q∗) (1 − q̂)

�

Now we move on to proving the �eorem. For d ≤ 3, the thresh-

old that we use is the median and hence the bound from �eorem

5.3 applies. So we prove the bound for the case of d ≥ 3 and

q̂ = 1 − 1

d−1
. By Lemma 4.2, Lemma 4.3 and Lemma A.1 we have:

OPT ≤ n
d−1

d µ1/d ≤ n
d−1

d (eR (q∗))1/d ≤ n
d−1

d

(
e ·

q̂ · v (q̂)

1 − q̂

)
1/d

On the other hand by Lemma 5.2, we can bound the contributions

of the quantile threshold mechanism, with quantile q̂ = 1− 1

d−1
≥ 1

2
:

APX ≥
n · q̂ · v (q̂)1/d

(1 − q̂ + n · q̂)1/d
≥

n · q̂ · v (q̂)1/d

(q̂ + n · q̂)1/d
=

n

(n + 1)1/d
q̂ · v (q̂)1/d

q̂1/d

�us the ratio of the two mechanisms is at least:

APX

OPT

=

( n

n + 1

)
1/d

1

e1/d

(
q̂d−1

1 − q̂

q̂

)
1/d

=

( n

n + 1

)
1/d

1

e1/d

((
1 −

1

d − 1

)d−1
1

d − 2

)1/d

Since (1 − 1/x )x ≥ 1

4
for x ≥ 2, simplifying the la�er yields the

theorem.

A.3 Proof of �eorem 6.1
�e fact that the given bidding function is an equilibrium follows

from the fact that it is a monotone function of the valuation of each

player. �erefore, it gives rise to the interim allocation described

in the theorem. Moreover, the pair of the bid function and interim

allocation satisfy Myerson’s payment identity. Finally, no player

wants to bid outside of the support of the bid distribution. Hence,

from standard analysis that can be found in [18], this implies that

the proposed pair of bid function and interim allocation constitute

a Bayes-Nash equilibrium. Uniqueness of this equilibrium follow

from the results of [8]. We now move on to analyzing the contri-

butions of this equilibrium of the all-pay contest. For simplicity

we will assume that the number of players is a multiple of 4. �e

result easily extends to the general case, albeit with more complex

notation.

We �rst prove upper and lower bounds on the interim alloca-

tion of players as a function of their quantile qi = 1 − F (vi ). For

any quantile q, denote with X j (q) = 1{qj ≤ q}. Observe that:

E[X j (q)] = Pr[qj ≤ q] = q, since quantiles are distributed uni-

formly in [0, 1]. Moreover, if we denote with x̂ i (qi ) the interim

allocation of player i when he has quantile qi , then:

x̂ i (qi ) =
4

n Pr

[∑
j,i X j (qi ) ≤

n
4
− 1

]
(26)

Let Sn−1 (qi ) =
∑
j,i X j (qi ). Since Sn−1 is the sum of n − 1

independent 0/1 random variables, each with success probability q,

we get by the Cherno� bound that, for any ϵ > 0:

Pr[(qi −ϵ ) (n−1) ≤ Sn−1 (qi ) ≤ (qi +ϵ ) (n−1)] ≥ 1−2 exp{−2ϵ2n}

�us we have that for qi , such that: (qi + ϵ ) (n − 1) ≤ n
4
− 1:

x̂ i (qi ) =
4

n
Pr[Sn−1 (qi ) ≤

n

4

− 1] =
4

n

(
1 − Pr[Sn−1 (qi ) >

n

4

− 1]

)
≥

4

n
(1 − Pr[Sn−1 (qi ) > (qi + ϵ ) (n − 1)]) ≥

4

n

(
1 − 2e−2ϵ 2n

)
Re-arranging the condition on qi , we get that the la�er bound on

the interim allocation holds for qi ≤
1

4
− 3

4

1

n−1
− ϵ .

Similarly, we have that for qi , such that: (qi − ϵ ) (n − 1) > n
4
− 1:

x̂ i (qi ) =
4

n
Pr[Sn−1 (qi ) ≤

n

4

− 1]

≤
4

n
Pr[Sn−1 (qi ) ≤ (qi − ϵ ) (n − 1)] ≤

8

n
exp{−2ϵ2n}

Re-arranging the condition on qi , we get that the la�er bound on

the interim allocation holds for qi >
1

4
− 3

4

1

n−1
+ ϵ . Finally, we

know that the interim allocation x̂ i (qi ) is non-increasing in qi .
Consider the interim cost of a player as a function of his quantile,

which by transforming Myerson’s identity to quantile space and

observing that v ′i (z) = −|v
′
i (z) |, takes the form:

ci (bi (qi )) = vi (qi )x̂ i (qi ) −

∫
1

qi
x̂ i (z) |v

′
i (z) |dz

For ease of notation, let θ+ =
1

4
− 3

4

1

n−1
+ ϵ and θ− =

1

4
− 3

4

1

n−1
− ϵ .

We will lower bound the interim cost of a player with qi ≤ θ−:

ci (bi (qi )) = vi (qi )x̂ i (qi ) −

∫ θ+

qi
x̂ i (z) |v

′
i (z) |dz −

∫
1

θ+
x̂ i (z) |v

′
i (z) |dz

≥ vi (qi )x̂ i (qi ) − x̂ i (qi )

∫ θ+

qi
|v ′i (z) |dz −

8e−2ϵ 2n

n

∫
1

θ+
|v ′i (z) |dz

≥ vi (θ+) x̂ i (qi ) −
8e−2ϵ 2n

n

∫
1

θ+
|v ′i (z) |dz

≥ vi (θ+)
4

n
(1 − 2e−2ϵ 2n ) −

8e−2ϵ 2n

n
v̄

≥
4

n
vi

(
1

4

+ ϵ
)
−

16

n
e−2ϵ 2nv̄

Since a player has quantile smaller than θ− with probability equal

to θ−, and since interim cost is non-increasing in quantile, we can

lower bound the ex-ante expected contribution of each player:

E[bi (qi )] ≥ θ− · c
−1

i

(
4

n
vi

(
1

4

+ ϵ
)
−

16

n
e−2ϵ 2nv̄

)
By picking ϵ =

√
log(16v̄/κ )

2n (where κ is the median), we get:

E[bi (qi )] ≥ θ− · c
−1

i

(
4

n
vi

(
1

4

+ ϵ
)
−
κ

n

)
Assuming that

√
log(16v̄/κ )

2n ≤ 1

8
, which happens ifn ≥ 32 log(16v̄/κ),

we have that: vi
(

1

4
+ ϵ

)
≥ vi (1/2) = κ and θ− ≥

1

8
− 3

4

1

n−1
. Hence:

E[bi (qi )] ≥
(

1

8

−
3

4

1

n − 1

)
· c−1

i

(
3

n
κ
)

Further assuming that
3

4

1

n−1
≤ 1

16
⇔ n ≥ 13 (which holds when-

ever n ≥ 32 log(16v̄/κ)), we get that: E[bi (qi )] ≥
1

16
· c−1

i

(
3

nκ
)
.

Combining the above we get for n ≥ 32 log(16v̄/κ), the contribu-

tions of the all-pay contest is lower bounded by: APX ≥ n
16
· c−1

i

(
3

nκ
)
.

If ci (x ) = xd , then: APX ≥ n · 1

16
·
(

3

nκ
)

1/d
. On the other hand by
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Lemma 4.4, we have that for MHR distributions: OPT ≤ n
(
eκ
n

)
1/d

.

Combining the lower bound on APX and the upper bound on OPT

yields the theorem.
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