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Abstract. We study simple item bidding mechanisms for the combina-
torial public project problem and explore their efficiency guarantees in
various well-known solution concepts. We first study sequential mecha-
nisms where each agent, in sequence, reports her bid for every item in a
predefined order on the agents determined by the mechanism. We show
that if agents’ valuations are unit-demand any subgame perfect equilib-
rium of a sequential mechanism achieves the optimal social welfare. For
the simultaneous bidding equivalent of the above auction we show that
for any class of bidder valuations, all Strong Nash Equilibria achieve at
least a O(logn) factor of the optimal social welfare. For Pure Nash Equi-
libria we show that the worst-case loss in efficiency is proportional to the
number of agents. For public projects in which only one item is selected
we show constructively that there always exists a Pure Nash Equilib-
rium that guarantees at least 1

2
(1 − 1

n
) of the optimum. We also show

efficiency bounds for Correlated Equilibria and Bayes-Nash Equilibria,
via the recent smooth mechanism framework [26].

1 Introduction

In recent years considerable attention has been devoted to the design and anal-
ysis of “simple” mechanisms: algorithms for strategic environments that yield
provable guarantees yet are simple enough to run in practice. This trend is mo-
tivated by the realization that mechanisms which are implemented in practice
and encourage participation cannot be arbitrarily complex. Since simplicity often
comes at the price of lowered economic efficiency, the goal in analyzing simple
mechanisms is to quantify this loss in comparison to some theoretical optimum.

Simple mechanisms have been explored thus far primarily in auction domains.
Some examples include posted price mechanisms that approximate revenue-
optimal auctions [5], and simultaneous single item auctions that have good social
efficiency relative to the fully efficient combinatorial auctions [6, 1, 13, 10].
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In contrast to auctions where agents compete for allocated resources, public
projects require agents to coordinate on resources that are collectively allocated.
This is captured in the combinatorial public projects model introduced in [21],
where there are multiple resources (items), each agent has a combinatorial val-
uation function on subsets of the items, and the goal is to select some fixed
number of items that maximizes the sum of the agents’ valuations. This prob-
lem provides the first evidence of the computational hardness of truthful im-
plementation: for agents with nondecreasing submodular valuations, there are
constant-factor approximation algorithms when agents’ valuations are known,
but there is no computationally efficient truthful mechanism that can obtain a
reasonable approximation under standard complexity-theoretic assumptions [21].

As a canonically hard mechanism design problem, there has been an ongo-
ing investigation of mechanisms for combinatorial public projects under various
valuation classes and solution concepts [3, 12, 8, 14, 7]. When considering simple
mechanisms, the item-bidding with first-prices mechanism, which is the ana-
logue of those used in combinatorial auctions [6, 1, 13], is arguably the simplest
non-trivial mechanism for combinatorial public projects: the mechanism asks
each agent, simultaneously, to report her valuation separately for each item,
then chooses the k items whose sum of reported valuations is maximal and
charges agents first prices, i.e. each agent pays her reported valuation for ev-
ery item selected by the mechanism. Despite its appealing simplicity, it turns
out that achieving desirable efficiency guarantees at equilibrium is not trivial
in this mechanism. In evidence, consider an instance with n agents and 3 items
A,B,C, in which a single item is to be selected and agents valuations are as
those summarized in the following n× 3 matrix:

[vij ] =


n− 1 1 0

...
...

...
n− 1 1 0
0 0 n− 1


In this instance all the agents except agent n have a valuation viA = n−1 for

A, viB = 1 for item B, and viC = 0 for item C, and agent n has a valuation of 0
for items A and B and a valuation of n−1 for project C. Obviously the optimal
outcome is for A to be chosen leading to a social welfare of (n − 1)2. However,
there exists a Nash Equilibrium where project B is selected: if all agents except
agent n bid 1 for B and 0 for A and agent n bids truthfully, then in this profile
the bids on B total to (n−1) (assuming tie-breaking is chosen in favor of B) and
B is selected. To see that this an equilibrium, note that for any agent except n
the only two ways to alter the allocation is either by only reducing the current
bid for B to 0 and letting C be selected, or reducing the bid for B to 0 and
increasing his bid on A to n−1. For both deviations the utility (valuation minus
payment) would be 0, which is exactly what the agent is currently getting.

The above example shows that even when agents have very simple valuation
functions (unit-demand), the price of anarchy – the ratio between the optimal
solution and that achievable in equilibrium – can be as bad as linear in the num-



ber of agents in the system. It may therefore seem like simple mechanisms for
combinatorial public projects are of little interest to anyone interested in rea-
sonable efficiency guarantees. However, a more careful observation at the above
example leaves some hope. The major difficulty in designing simple and effi-
cient mechanisms for combinatorial public projects is the inability of the bidders
to coordinate on the right equilibrium. Thus, to achieve worst case efficiency
guarantees, either the mechanism should allow for agents to signal among each
other, or the solution concept should allow for such signaling. Alternatively, an
optimistic designer could be interested in best-case guarantees by studying the
existence of good equilibria (Price of Stability), rather than that any equilibrium
will be good, since the designer himself could somehow signal which equilibrium
should be chosen. In this work we address all these three different routes. We
study both sequential and simultaneous bidding mechanisms. In sequential bid-
ding, the mechanism determines some order in which agents place their bids,
while in the simultaneous case all agents bid simultaneously.

1.1 Main Results

To understand outcome quality in our item bidding mechanisms, we consider a
number of standard solution concepts.

Sequential Item-Bidding Mechanism. We start by analyzing a sequential version
of the item-bidding first-price mechanism, where the agents are asked sequen-
tially (in an arbitrary order) to report their willingness-to-pay separately for
each item. We focus on the subgame-perfect equilibria of this extensive form
game, which is the most well-established concept for sequential games. We show
that when bidders have unit-demand valuations (i.e. their valuation when a
set S of items is chosen is their maximum valued item in the set) then every
subgame-perfect equilibrium achieves optimal social welfare. We reiterate that in
the simultaneous mechanism the inefficiency can grow linearly with the number
of players even for unit-demand valuations, as illustrated in the example given
above, rendering the design of good mechanisms for such valuations a non-trivial
task. The intuition behind our result is that the sequentiality of the moves allows
the agents to signal their preferences and to coordinate on a specific equilibrium
by pre-committing on their declared valuations.

Strong-Nash Equilibria of the Simultaneous Item-Bidding Mechanism. Subse-
quently we analyze the quality of Strong Nash Equilibria (equilibria that are
stable under coalitional deviations) of the simultaneous item-bidding mechanism,
where all agents are asked to simultaneously submit their willingness-to-pay sep-
arately for each item. Our simple mechanism for the public project problem can
be thought of as a coordination game, where agents need to coordinate on their
best set of items. In this context the Strong Nash Equilibrium is a very natural
solution concept. We show that the loss in efficiency (the strong price of anarchy)
is no more than O(log n). Essentially, Strong Nash Equilibria alleviate the coor-
dination problem inherent in public project auctions by allowing the agents to



coallitionally deviate if they found themselves stuck at a bad equilibrium where
no agent unilaterally could affect the set of chosen items.

Nash Equilibria of the Simultaneous Item-Bidding Mechanism. Next we consider
the quality of Pure Nash Equilibria of the simultaneous auction, and show that
the worst-case loss in efficiency is proportional to n, the number of agents4. Our
upper bound requires no assumption on bidders’ valuations. Note that while the
n bound on the price of anarchy seems weak, it is better than any determinis-
tic truthful mechanisms: [21] shows that computationally efficient deterministic
dominant strategy mechanisms cannot do better than

√
m (where m is the num-

ber of resources). For the special case of unit-demand agents (whose valuation
for a set of items is the value of the best item selected) we give an improved
bound of n/k, where k is the number of items that need to be chosen.

The high inefficiency of the worst pure nash equilibrium is due to the fact
that certain bad equilibria survive due to the lack of good unilateral deviations.
However, such equilibria tend to be unreasonable and unnatural. Thus it is
interesting to study the existence of good equilibria of the auction. For the case
when one item is to be chosen we show constructively that the best Pure Nash
Equilibrium is guaranteed to obtain at least a 1

2 (1−
1
n ) fraction of the optimal

welfare.

Learning Behavior and Incomplete Information. The equilibrium analysis so
far assumed that agents will reach a stable solution of the bidding game, i.e., an
equilibrium. We also explore the quality of solution achieved in a repeated version
of the simultaneous game under the weaker assumption that all agents employ
no-regret learning strategies. If all agents use no-regret learning strategies [2],
than the resulting outcome distribution is a coarse correlated equilibrium of the
game. We show that the loss in efficiency of any coarse correlated equilibrium is
no more than 2 · n · k for arbitrary valuations, 2e

e−1n for fractionally subadditive
valuations and e

e−1n/k for unit-demand valuations. The latter bounds are given
via the smooth-mechanism framework [26] and thereby also carry over to the set
of Bayes-Nash equilibria of the incomplete information setting, where valuations
are private and drawn from commonly known distributions.

1.2 Related Work

There is a long recent literature on combinatorial public projects that mainly
tries to find truthful mechanisms with good efficiency guarantees [21, 24, 3, 8].
Specifically, as mentioned above, in [21] it is shown that under standard as-
sumptions, no tractable truthful mechanism can achieve an approximation factor
better than

√
m for agents with nondecreasing submodular valuations.

There has been a long line of research on quantifying inefficiency of equilib-
ria starting from [15] who introduced the notion of the price of anarchy. Several

4 We also show that this bound is essentially tight, by giving a lower bound of n− 1
on the price of anarchy.



recent papers have studied the efficiency of simple mechanisms. A series of pa-
pers, Christodoulou, Kovacs and Schapira [6], Bhawalkar and Roughgarden [1]
Hassidim, Kaplan, Mansour, Nisan [13], and Feldman et al. [10], studied the
inefficiency of Bayes-Nash equilibria of non-truthful combinatorial auctions that
are based on running simultaneous separate single-item auctions. Lucier and
Borodin studied Bayes-Nash Equilibria of non-truthful auctions based on greedy
allocation algorithms [16]. Paes Leme and Tardos [20], Lucier and Paes Leme
[17] and Caragiannis et al. [4] studied the ineffficiency of Bayes-Nash equilibria
of the generalized second price auction. Roughgarden [22] showed that many
price of anarchy bounds carry over to imply bounds also for learning outcomes.
Roughgarden [23] and Syrgkanis [25] showed that such bounds also extend to
bound the inefficiency of games of incomplete information. Recently, in [26] we
give a more specialized framework for the case of non-truthful mechanisms in
settings with quasi-linear preferences, showing how to capture several of the pre-
vious results. In this work we show that our upper bounds for coarse correlated
and Bayes-Nash equilibria of the simultaneous auction fall into the framework
of [26].

The quality of subgame-perfect equilibria of sequential versions of simultane-
ous games, was introduced in [19] and has been applied to cost-sharing games,
cut and consensus games, load balancing games. Our result on the sequential
item-bidding mechanism is of similar flavor to this line of work and gives an-
other interesting application of the latter approach.

2 Model and Notation

In combinatorial public projects there is a set of m items and n agents. Each
agent i ∈ [n] has a valuation function vi : 2

[m] → R≥0 for each set of chosen items.
Given some fixed parameter k, the goal of the designer is to select a set S of size k
that maximizes the total valuation of the agents V (S) =

∑
i vi(S). Since agents’

valuations are considered private information, the mechanism enforces payments
to help achieve good equilibria. For a profile of agents’ bids b, when the selected
subset by the mechanism is S and the payments profile is p = (p1, p2, . . . , pn),
the utility of an agent i denoted ui(b) is vi(S)− pi.

Valuation Classes. In some cases we state results over arbitrary valuation
classes, and in others our results are stated for valuation classes that have par-
ticular combinatorial structure. A valuation v is additive if v(S) =

∑
j∈S v({j})

for all S ⊆ [m]. A valuation v is (nondecreasing) submodular if it has a decreas-
ing marginal utilities property: v(S)− v(S ∪{j}) ≥ v(T )− v(T ∪{j}) for S ⊆ T
and all j ∈ [m]. A valuation v is unit-demand if v(S) = maxj∈S v({j}). It is easy
to see that every unit-demand valuation is submodular.5

5 In our case, when agents have submodular valuations, the algorithmic problem be-
comes that of maximizing a submodular function under a cardinality constraint for
which there is a computationally efficient greedy algorithm that is well-known to be



A generalization of submodular valuations which we will use in this work
is that of fractionally subadditive (or XOS ) valuations (see [9]): a valuation v
is fractionally subadditive if and only if there exist a set of additive valuations
(vℓ)ℓ∈L such that v(S) = maxℓ∈L vℓ(S).

The First-Price Item-Bidding Mechanism. We consider the following sim-
ple item-bidding mechanism. Each agent i ∈ [n] submits a bid bij for each item
j ∈ [m]. For an item j ∈ [m] let Bj =

∑
i bij be the total bid placed on j.

The mechanism chooses the k items with the highest total bids. For profile b
let S(b) be the chosen set. Each agent is charged her bids for the chosen items:
pi =

∑
j∈S(b) bij . We consider two variants: in the simultaneous mechanism, all

agents submit their bids simultaneously. In the sequential mechanism, the agents
submit their bids sequentially in some order, with each agent seeing the bids of
those who came before. We define solution concepts for both mechanisms.

Solution Concepts for Simultaneous Games. We now define the main solution
concepts that we will use in the context of the simultaneous move mechanism. A
Pure Nash Equilibrium (PNE) is a set of bids (bij)i∈[n],j∈[m] such that, for each
agent i, there is no bid vector b′i such that

ui(b
′
i, b−i) > ui(b). (1)

If we allow the agents to make coalitional deviations then the appropriate equi-
librium concept is Strong Nash Equilibrium (SNE). A set of bids (bij)i∈[n],j∈[m]

constitutes a SNE if, for each set of agents S ⊆ [n], there is no bid vector
b′S = (b′i)i∈S such that

∀i ∈ S : ui(b
′
S , b−S) > ui(b). (2)

A relaxed notion of equilibrium corresponds to no-regret learning outcomes
(due to space limitations see [2] for a survey). It is known that such learning
outcomes correspond to Coarse Correlated Equilibria of a game. A (possibly
correlated) distribution on bids b ∼ D is a Coarse Correlated Equilibrium if, for
every agent i and for every bid b′i,

Eb∼D[ui(b)] ≥ Eb∼D[ui(b
′
i, b−i)] (3)

that is, no agent i can improve his expected utility by unilaterally deviating.
All of the above equilibrium notions implicitly assume a full-information

model, where agent valuations are commonly known. In the alternative model
of incomplete information, the valuation profile v is drawn from distribution F ,
where this distribution is common knowledge. In the Item-Bidding Mechanism
under incomplete information, each agent’s strategy is a function bi(vi) that
outputs an agent’s bids given her realized valuation. A Bayes-Nash Equilibrium
of this game is a profile of strategies b(v) = (bi(vi))i∈N such that

∀i ∈ N, ∀vi : Ev−i|vi
[ui(bi(vi), b−i(v−i))] ≥ Ev−i|vi

[ui(b
′
i(vi), b−i(v−i)]

within a factor of 1 − 1/e of the optimum (assuming that agents comply with the
protocol and reveal their true valuations) [18].



The Sequential Item-Bidding Mechanism. In the sequential item-bidding
mechanism, the agents are ordered under some arbitrary but commonly-known
predefined sequence. Each agent is asked sequentially, in this order, to report a
bid bij for each item j ∈ [m]. After all the agents have reported their bids, the
mechanism chooses the set of k items with the highest total bid Bj =

∑
i bij and

charges each agent her bid on each selected item. In this sequential game the
strategy of each agent is not simply a set of bids bij for each item j ∈ [m] but
rather it is a contingency of plans describing how the agent will bid conditioned
on the history of play up to her turn. If we denote with hi the history of play (i.e.
reported bids) up to agent i then the strategy of an agent is a set of functions
bij(hi) that maps each history to a bid vector.

Subgame-Perfect Equilibrium. A natural solution concept for sequential
games is Subgame-Perfect Equilibrium, a refinement of the Nash Equilibrium.
A profile of strategies is a subgame-perfect equilibrium if it constitutes an equi-
librium on any subgame induced for any possible history of play. Note that this
definition restricts the behavior of agents outside the equilibrium path, ruling
out non-viable threats (for detailed discussion of subgame-perfection see [11]).

Measure of Efficiency. For each equilibrium notion above, we can measure
worst-case efficiency by way of the price of anarchy. For a given equilibrium
concept, the corresponding price of anarchy is the ratio between the minimum
expected welfare of any equilibrium (with expectation over randomness in the
strategies and/or realizations of bidders’ valuations) and the expected optimal
social welfare (over randomness in the bidders’ valuations).

3 Sequential Item-Bidding Mechanism

We begin by considering outcomes of the sequential item-bidding mechanism at
subgame-perfect equilibrium. We will focus on the case that agents have unit-
demand valuations, where we find that the price of anarchy is 1. That is, the
agents always select an optimal outcome. Note that this is in contrast to the
example discussed in the introduction which shows that the price of anarchy (of
Nash equilibrium) for the simultaneous item-bidding mechanism can be as large
as n− 1.

Theorem 1. For unit-demand valuations and any k ≥ 1, the unique subgame
perfect equilibrium of the sequential item-bidding mechanism selects a welfare-
optimal outcome. Moreover, at this equilibrium each agent bids on a single item.

Proof. For any value profile V , let OPT (V ) = argmaxS : |S|=k{
∑

i vi(S)}, break-
ing ties arbitrarily. Throughout the proof we will think of a bid vector bi as
an additive valuation function bi, so that (in particular) OPT (b) is the out-
come selected by the mechanism when agents submit bids b. We will also write
V (S) =

∑
i vi(S) for the social welfare of an outcome S under valuations V .



Let b be an arbitrary bid profile, and for each i consider the valuation profile
b(i) = (b1, b2, . . . , bi, vi+1, . . . , vn). Note b(0) = V and b(n) = b. For each i ≥ 1,
consider the subgame that occurs just before agent i is about to bid, after agents
1 through i − 1 bid according to b. We will show by backward induction that
the unique equilibrium of this subgame selects outcome OPT (b(i−1)), and each
agent bids on at most one item in this equilibrium. Taking i = 1 will then prove
our theorem, since then OPT (b(0)) = OPT (V ) is the outcome of the mechanism.

The base case i = n + 1 is trivial, since by definition the mechanism selects
outcome OPT (b) = OPT (b(n)). For i ≤ n, we know by induction that, for any

bid bi made by agent i, the mechanism returnsOPT (bi,b
(i)
−i). We must show that,

for the utility-maximizing bid bi for agent i, OPT (bi,b
(i)
−i) = OPT (b(i−1)).

One potential strategy for agent i is to bid nothing (i.e., the zero bid 0),

obtaining utility vi(OPT (0,b
(i−1)
−i )). Since vi is unit-demand, the only way to

obtain higher utility is to choose some j with vi(j) > vi(OPT (0,b
(i−1)
−i )) and bid

some (minimal) bi so that j ∈ OPT (bi,b
(i)
−i). Note that this bi will place a positive

bid only on item j; let xj be the minimal value such that j ∈ OPT (bi,b
(i)
−i) when

bi(j) = xj . If agent i makes this minimal bid for j, he obtains utility vi(j)− xj .
We have argued that agent i maximizes utility by bidding on at most one

item, so (by induction) each agent’s bid at equilibrium is unit-demand.
Recalling the definition of xj , let Sj ∋ j be the set selected by the mechanism

when i bids xj on j. Since all valuations in b
(i−1)
−i are unit demand, we have

xj = b
(i−1)
−i

(
OPT

(
0,b

(i−1)
−i

))
− b

(i−1)
−i (Sj). (4)

We now consider two cases. First, suppose i maximizes utility by bidding

nothing, so bi = 0. ThenOPT (b(i)) = OPT (0,b
(i−1)
−i ). We will showOPT (b(i−1)) =

OPT (0,b
(i−1)
−i ), by showing that each set Sj achieves lower social welfare than

OPT (0,b
(i−1)
−i ) under profile b(i−1). (This suffices because, as argued above,

OPT (b(i−1)) must be either OPT (0,b
(i−1)
−i ) or Sj for some item j, since vi

is unit-demand). Pick any j ̸∈ OPT (0,b
(i−1)
−i ). Since bi is utility-maximal,

vi(OPT (0,b
(i−1)
−i )) ≥ vi(j) − xj . Substituting (4) and rearranging, we get that

b(i−1)(OPT (0,b
(i−1)
−i )) ≥ vi(j)+b

(i−1)
−i (Sj) = b(i−1)(Sj) and hence we conclude

b(i−1)(OPT (0,b
(i−1)
−i )) ≥ b(i−1)(Sj) as required.

Next suppose that i maximizes his utility by choosing bi to be a bid of
xj on item j. We will show that OPT (b(i−1)) = Sj , by showing that neither

OPT (0,b
(i−1)
−i ) nor Sj′ for j

′ ̸= j can achieve higher welfare under valuation pro-

file b(i−1). Since imaximized utility by bidding on j, we have vi(OPT (0,b
(i−1)
−i )) ≤

vi(j)− xj and vi(j)− xj ≥ vi(j
′)− xj′ for all j

′ ̸= j. Rearranging these inequal-

ities implies b(i−1)(OPT (0,b
(i−1)
−i )) ≤ b(i−1)(Sj) and b(i−1)(Sj′) ≤ b(i−1)(Sj)

for all j′ ̸= j, and hence OPT (b(i−1)) = Sj as required.
In either case, we have that the equilibrium at this subgame selects outcome

OPT (b(i−1)). The theorem now follows by induction.



4 Strong Nash Equilibrium of the Simultaneous
Item-Bidding Mechanism

In this section we give efficiency bounds for strong Nash equilibria of the simul-
taneous item-bidding mechanism. A state of a game is a strong Nash equilibrium
(SNE) if there is no coalition of agents that can each individually benefit by de-
viating as a group. Despite being a strong requirement, SNE is a natural solution
concept in public projects as allocations of resources are collectively shared by
agents.

Theorem 2. Any Strong Nash Equilibrium of the first-price item bidding mech-
anism has efficiency at least log(n) of the optimal.

Proof. Let Bi(A) be the sum of bids of agent i for set A. Let S be the set that
is selected at a strong nash equilibrium and OPT be the optimal set.

First we show that at any Strong Nash Equilibrium all the chosen projects
receive the same Bj , i.e. ∀j ∈ S : Bj = p. Suppose that some chosen project
has Bj > p. Then a agent i who is bidding positively on this project could just
decrease his bid by some ϵ. The selected set would remain unchanged and agent
i would be paying ϵ less than before. Hence, his utility would increase.

Now, suppose that all the agents deviate to bidding some small ϵ only on the
optimal set OPT . The definition of a strong Nash equilibrium states that there
exists an agent that doesn’t prefer the utility at the deviation. W.l.o.g. rearrange
the agents such that it is agent 1; then v1(S)−B1(S) ≥ v1(OPT ). Now suppose
that the agents {2, . . . , n} deviate to bidding each p

n−1 on each item in OPT .
By definition of SNE there exists an agent (w.l.o.g., agent 2) that doesn’t prefer
this deviation; that is, v2(S) − B2(S) ≥ v2(OPT ) − kp

n−1 . By similar reasoning
we can reorder the agents such that, for each i,

vi(S)−Bi(S) ≥ vi(OPT )− kp

n− i+ 1
(5)

Summing all the above inequalities we get:

V (S)−
∑
i

Bi(S) ≥ V (OPT )− kp
n∑

i=1

1

n− i+ 1
=⇒

V (S)− kp ≥ V (OPT )− kp log(n)

Since kp < V (S) we get that V (S) ≥ 1
log(n)V (OPT ).

The above result gives a reasonable bound on the efficiency loss in such
equilibria. Regarding existence of equilibrium, the non-existence for unit-demand
agents when choosing two items and of PNE in Section 5 applies here as well,
since SNE is a stronger solution concept.



5 Pure Nash Equilibria of the Simultaneous Item-Bidding
Mechanism

We now examine the efficiency and existence of Pure Nash Equilibria for the
simultaneous item-bidding mechanism. For brevity we defer some proofs to the
appendix. In [21] the

√
m lower bound on truthful mechanisms applies to two

agents with submodular valuations, and thus grows with the number of resources
in the problem. In contrast, we show here that for the item bidding mechanism
the loss in efficiency at any Pure Nash Equilibrium (whenever it exists) and for
any type of bidder valuations is at most proportional to the number of agents.

Theorem 3. Any PNE of the item bidding mechanism has PoA ≤ n.

Proof. As in the proof of Theorem 2 it is easy to see that at any Pure Nash
Equilibrium all the chosen items receive the same Bj , i.e. ∀j ∈ S : Bj = p.

Let b be a Nash Equilibrium and S the chosen set. Let OPT be the optimal
set of items for the true valuations of the agents. Each agent i could change the
chosen set to OPT by bidding p+ ϵ on every item j ∈ OPT . Since we are at a
Nash Equilibrium this deviation wouldn’t be profitable:

vi(S)−
∑
j∈S

bij ≥ vi(OPT )− kp

Summing over all agents and using the fact that
∑

i∈[n]

∑
j∈S bij = k · p we get:

V (S)− k · p ≥ V (OPT )− n · k · p

Due to individual rationality no agent is paying above his total value. Hence,
k · p ≤ V (S). Thus: nV (S) ≥ V (OPT ).

As shown in the Introduction, even when k = 1 the PoA of unit-demand
agents can be as bad as n − 1, implying that our PoA upper bound is nearly
tight. Note that when k = 1 unit-demand and additive valuations coincide.
Hence, our example proves that the PoA bound is tight even for additive agents.

Theorem 4. For unit-demand agents the PoA of the item bidding mechanism
can be at least n− 1, even when choosing a single item (k = 1).

Price of Stability. We now investigate existence of good pure Nash equilibria.

Theorem 5. There always exists a pure Nash equilibrium of the item bidding
mechanism when k = 1 and arbitrary number of agents. Moreover, it achieves
at least 1

2 (1−
1
n ) of the optimal social welfare.

Proof. For a set of agents S and an item j let: Vj(S) =
∑

i∈S vij . Moreover,

let aSj,j′ = Vj(S)− Vj′(S). Let a
S∗

A,B = maxS⊂N maxj∈M maxj′∈M−j a
S
j,j′ , that is

among all possible quantities aSj,j′ , a
S∗

A,B is the maximum one. Observe that in
the above maximum we take maximum only among sets that are strict subsets
of N . In other words S∗ ⊂ N and N − S∗ ̸= ∅. The reason is that we need at
least one agent to price set the “winners”. We claim that the following outcome
is an equilibrium:



– ∀i ∈ S∗ : bi(A) = viA − viB and ∀j ̸= A : bi(j) = 0

– ∀i /∈ S∗ : bi(B) = viB − viA +
aS∗
A,B−aN−S∗

B,A

n and ∀j ̸= B : bi(j) = 0

We denote with p =
∑

i∈S∗ bi(A). Notice that by the definition of the equilibrium

p =
∑

i∈S∗ bi(A) = VA(S
∗) − VB(S

∗) = aS
∗

A,B . Moreover, p =
∑

i/∈S∗ bi(B) =

VB(N − S∗)− vA(N − S∗) + aS∗
A,B − aN−S∗

B,A = aS
∗

A,B .
We first focus on a agent i ∈ S∗. We take cases on his possible deviations

and show that none is profitable:

– Drop bid on A and let B win: To show this is not profitable we need to show
that viA− bi(A) ≥ viB ⇔ viA−viB ≥ bi(A). From the equilibrium definition
this is satisfied with equality.

– Drop bid on A and bid p on an item j ̸= A,B to make it win: We need to
show that viA − bi(A) ≥ vij − p ⇔ viA − viA + viB ≥ vij − aS

∗

A,B ⇔ aS
∗

A,B ≥
vij − viB = a

{i}
j,B . Which holds by the maximality of aS

∗

A,B .

Now we focus on a agent i /∈ S∗.

– Slightly increase his bid on B to make B win: We need to show that viA ≥
viB − bi(B) ⇔ bi(B) ≥ viB − viA. By the maximality of aS

∗

A,B , we have that

aS
∗

A,B ≥ aN−S∗

B,A . Hence, the inequality holds by the definition of equilibrium.
– Drop bid on B and bid p on item j ̸= A,B to make it win: We need to show

that viA ≥ vij − p ⇔ viA ≥ vij − aS
∗

A,B ⇔ aS
∗

A,B ≥ vij − viA = a
{i}
j,A, which

holds by the maximality of aS
∗

A,B .

In fact, above we gave a specific equilibrium where the price setting agents
split equally the excess aS

∗

A,B − aN−S∗

B,A , one can easily see that any splitting of
that excess among the price setting agents is an equilibrium.

Efficiency. For the equilibrium constructed above we know that:

∀j ̸= j′, S′ ⊂ N : VA(S
∗)− VB(S

∗) ≥ Vj(S
′)− Vj′(S

′)

Let j∗ be the optimal item. Consider the above property for j = j∗, j′ = A, and
S′ = N − {argmini∈N vij∗}. The condition gives us:

VA(S
∗)− VB(S

∗) ≥ Vj∗(S
′)− VA(S

′)

By the definition of S′ we know that Vj∗(S
′) ≥ (1 − 1

n )Vj∗(N). In addition
VA(S

∗) ≤ VA(N) and VA(S
′) ≤ VA(N). Combining all the above together we

get:

2VA(N) ≥ VA(S
∗) + VA(S

′)− VB(S
∗) ≥ Vj∗(S

′) ≥
(
1− 1

n

)
Vj∗(N)

From this point onwards, due to lack of space we defer all proofs to the full
version of the paper. For the case of two agents we can show existence of an
optimal equilibrium.

Theorem 6. For k = 1, n = 2 there exists an optimal equilibrium.



Existence and Complexity. In contrast to case where one project is chosen,
we show that even when k = 2 there may not exist a PNE when agents valuations
are additive.

Theorem 7. For additive agents and k = 2 there may not be a PNE.

Regarding complexity, the computational hardness can be shown by reducing
the problem of finding a Pure Nash Equilibrium to that of the well-studied
problem of finding maximal coverage of a universe of elements.

Theorem 8. It is NP-hard to compute a Pure Nash Equilibrium of the item
bidding mechanism even for two agents with coverage valuations.

6 Smoothness of the Item-Bidding Mechanism

In this section we study the efficiency achieved at learning outcomes and also
when players have incomplete information about the valuations of the rest of the
players. We defer proofs to the appendix. We give efficiency bounds by utilizing
the recently proposed Smooth Mechanism framework [26]. For completeness, we
present the basic definition of smoothness and the theorem that we will utilize.

Definition 1 (Syrgkanis, Tardos [26]). A mechanism is (λ, µ)-smooth if for
any valuation profile v, there exist strategies b′i(bi, v), such that for any strategies
b−i of the rest of the players:∑

i

ui(b
′
i(bi, v), b−i) ≥ λOPT (v)− µ

∑
i

Pi(b) (6)

where OPT (v) is the optimal social welfare for valuation profile v, and Pi(b) is
the payment of player i under bid profile b.

Theorem 9 (Syrgkanis, Tardos [26]). If a mechanism (λ, µ)-smooth then the
efficiency at any correlated equilibrium of the complete information game and at
any Bayes-Nash equilibrium of the incomplete information game where vi’s are
drawn from commonly known independent distributions Fi, is at least λ

max{µ,1} .

If the deviations b′i(bi, v) in Definition 1 are independent of bi then the latter
holds also at coarse-correlated equilibria.

We show that for any class of bidder valuations and for any k the Item-
Bidding Mechanism is a ( 12 , n · k)-smooth mechanism, thereby implying a Price
of Anarchy of at most 2nk for the aforementioned solution concepts.

Theorem 10. For agents with arbitrary monotone valuations the Item-Bidding
Mechanism is

(
1
2 , n · k

)
-smooth.

When the bidders are fractionally subadditive, we show that the Item-Bidding
Mechanism is

(
1
2

(
1− 1

e

)
, n

)
-smooth, implying a Price of Anarchy of at most

2e
e−1n, independent of the number k of projects to be chosen.



Theorem 11. For agents with fractionally subadditive monotone valuations the
Item-Bidding Mechanism is

(
1
2

(
1− 1

e

)
, n

)
-smooth.

When players are unit-demand we are able to show that the Item-Bidding
Mechanism actually satisfies the semi-smoothness property of Lucier et al. [17]
which is essentially the special case of Definition 1 where the deviating bids
depend only on a players own valuation. Such a stronger property allows for the
efficiency guarantee of theorem 9 to carry over to incomplete information settings
where the bidder distributions are correlated. We show that the mechanism is
(1 − e−1, n

k ) semi-smooth for the case of unit-demand bidders implying a Price
of Anarchy bound of at most e

e−1
n
k , which decreases as the number of chosen

project increases (i.e. more players are satisfied by building more projects).

Theorem 12. When bidder valuations are unit-demand then the Item-Bidding
Mechanism is (1− e−1, n

k ) semi-smooth.

7 Discussion

The work presented in this paper is a first step towards the broader under-
standing of equilibria induced in combinatorial public projects. More generally,
we explore the tools for mechanism design under solution concepts other than
dominant strategy truthfulness.

While our bounds for pure Nash equilibria are nearly tight, better efficiency
bounds may perhaps be achieved for the other solution concepts we explored
in this work. It may be possible that sublogarithmic bounds can be shown for
Strong Nash Equilibria, or that constant factor bounds may be achieveable by
subgame perfect equilibria beyond the case of unit-demand bidders.

The simple mechanism for public projects we analyzed here is the item bid-
ding mechanism with first prices. This is arguably the simplest non-trivial mech-
anism in this setting, and can be extended in multiple ways; similar allocation
rules with second prices, or including constraints on the allocation rule, may lead
to substantially different results than the ones presented here. In particular, we
believe there is a simple mechanism where agents can reach an efficient equilib-
rium through natural dynamics for public projects, even in settings where no
reasonable Maximal-In-Range mechanisms exist.
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A Appendix

A.1 Omitted proofs from Section 5

Theorem. For k = 1, n = 2 there exists an optimal equilibrium.

Proof. For m = 2 it is easy to show existence of equilibrium by examining all
possible cases. So we focus on the case m ≥ 3.

Let A = argmaxj Vj be the optimal project. Also, let B = argmaxj ̸=A v1j
and C = argmaxj ̸=A,B v2j .

Suppose that v1A − v1C ≥ 0 and v2A − v2B ≥ 0. Then we claim that b1A =
v1A − v1C , b2A = v2A − v2B , b1B = b2C = b1A + b2A = p and every other bid 0
is an equilibrium. Some useful properties of the above bidding: by the fact that
VA ≥ VB, VC and the definitions of B,C we also get that: b1A ≥ v2C − v2A ≥
maxj ̸=A,B v2j − v2A and b2A ≥ v1B − v1A ≥ maxj ̸=A v1j − v1A.

Let’s examine the deviations of agent 1: He could include B by slightly de-
creasing b1A and slightly increasing b1B . Thus, we need: v1A − b1A ≥ v1B − p ⇔
b2A ≥ v1B − v1A. He could include C by slightly decreasing b1A and slightly
increasing b1C . Thus we need: v1A − b1A ≥ v1C ⇔ b1A ≤ v1A − v1C which holds
with equality. He could include some other item j ̸= B,C by placing a bid of
p on that: v1A − b1A ≥ v1j − p ⇔ b2A ≥ v1j − v1A. Similarly we can verify
equilibrium for agent 2.

Now we move to the case where some of v1A − v1C or v2A − v2B is negative.
We observe that both of them cannot be negative: if they were then VA =
v1A + v2A < v1C + v2B ≤ v1B + v2B = VB, which is a contradiction. Thus either
v1A < v1C and v2A ≥ v2B or v1A ≥ v1C and v2A < v2B . In the first case, since
VA ≥ VC we have v2A ≥ v2C . Thus v2A ≥ maxj∈[m] v2j . In the latter case, since
VA ≥ VC we have v1A ≥ v1B . Thus v1A ≥ maxj∈[m] v1j .

Thus, in both cases there is a agent whose maximum value item is the
optimal item. Hence, we now construct the following equilibrium: Let A =
argmaxj∈M v1j and B = argmaxj∈M v2j . Wlog assume that v1A + v2A ≥ v1B +
v2B and hence A is the overall optimal item.

We claim the following is an equilibrium: Let p ∈ [v2B−v2A, v1A−v1A]. Since
v1A + v2A ≥ v1B + v2B =⇒ v1A − v1B ≥ v2B − v2A, we know that the above
interval is not empty. Player 1 bids p+ for A and 0 for everything else. Player 2
bids p for B and 0 for everything else. Project A is selected.

Player 1 has two possible deviations. He could decrease his bid on A and bid
p+ on some other project j to make it win. But by the definition of A, we know
that v1A ≥ v1j =⇒ v1A − p ≥ v1j − p. Hence, this is not profitable for him.
Alternatively, he could just decrease his bid on A and let B win. His utility then
would be v1B . But since p ≤ v1A − v1B =⇒ v1A − p ≥ v1B . Hence, this is not
profitable either.

Player 2 has also two possible deviations. He could slightly increase his bid on
B to make it win. But since p ≥ v2B − v2A =⇒ v2A ≥ v2B − p. Alternatively he
could bid p+ on some other project j. But by definition of B we know: v2B ≥ v2j .
Combining with the region of p, we get: p ≥ v2B − v2A ≥ v2j − v2A =⇒ v2A ≥
v2j − p.



Theorem. Even for additive agents and k = 2 there may not be a PNE.

Proof. We show that if k = 2 and there is only one price setting project then
there might not exist an equilibrium even for two agents with additive valuations.
The instance constists of 2 agents, 3 projects {A,B,C} and k = 2. The valuations
of the agents are:

[vij ] =

[
1 2 3
3 2 1

]
Since, two out of three projects are chosen then there will be only one price
setting project. Any person that bids on the project that is excluded cannot
possibly bid on the chosen projects at equilibrium since in that case he could
just decrease his bid on the price setter and on the chosen project and strictly
increase his utility. Thus at equilibrium some agent (payer) is bidding alone on
the chosen projects and the other agent (price setter) is bidding only on the non-
chosen project. Moreover, all the bids are equal to some p. We take all possible
cases of chosen projects and payers and show that none can be an equilibrium:

– A,B is chosen.
• 1 is the payer: Then it has to be: p ≤ v1A − v1C =⇒ p ≤ −2
• 2 is the payer: Then it has to be: v1C − v1A ≤ p ≤ v2B − v2C =⇒ 2 ≤

p ≤ 1
– B,C is chosen.

• 1 is the payer: Then it has to be: v2A − v2C ≤ p ≤ v1B − v1A =⇒ 2 ≤
p ≤ 1

• 2 is the payer: Then it has to be: p ≤ v2C − v2A =⇒ p ≤ −2
– A,C is chosen.

• 1 is the payer: Then it has to be: p ≤ v1A − v1B =⇒ p ≤ −1
• 2 is the payer: Then it has to be: p ≤ v2C − v2B =⇒ p ≤ −1

Theorem. It is NP-hard to compute a Pure Nash Equilibrium of the item
bidding mechanism game for two agents with coverage valuations.

Proof. It is well known that given a single agent with a coverage valuation,
finding the set S that maximizes his value is NP-hard. Hence, we will just reduce
the problem of finding the value maximizing set of a coverage valuation to finding
an equilibrium of a two agent combinatorial public project auction.

Suppose that agent 1 has some valuation v1 and agent 2 has a valuation v2,
such that ∀S : v2(S) = ϵv1(S). Consider a Nash Equilibrium b and with chosen
set S. Let P1(S) be the total price paid by agent 1 and P2(S) the total price
paid by agent 2. agent 2 is paying at most v2(S). Each chosen project in the
equilibrium receives the same amount of bids p. Hence, P1(S) ≥ kp − v2(S) =
kp− ϵv1(S). agent 1 could potentially change the chosen set to any other set S′

by bidding p+ δ on S′. Since that is not a profitable deviation:

v1(S)− P1(S) ≥ v1(S
′)− kp =⇒ v1(S)− kp+ ϵv1(S) ≥ v1(S

′) =⇒
(1 + ϵ)v1(S) ≥ v1(S

′)



Since ϵ can be arbitrarily small, this implies that S ∈ argmaxS′ v1(S
′). Hence,

computing an equilibrium would imply computing the optimal set for the single
agent optimization problem.

A.2 Omitted Proofs from Section 6

Theorem. For agents with arbitrary monotone valuations the Item-Bidding
Mechanism is

(
1
2 , n · k

)
-smooth.

Proof. Consider a valuation profile v and a bid profile b. Let OPT (v) be the
optimal set of projects for valuation profile v. Let p1(b) be the total bid of the
highest valued project under bid profile b. Suppose that agent i switches to b′i in

which he draws a random bid t uniformly at random from [0, vi(OPT (v))
k ] (i.e. with

density f(t) = k
vi(OPT (v)) ) and submits this random bid t on all the projects in

OPT (v). If p1(b) < t then the player gets all of the projects in OPT (v) selected
and hence gets a value of vi(OPT (v)). The expected payment that he pays is

at most his expected total bid, which is k vi(OPT (v))
2k . By the quasi-linearity of

utilities and the linearity of expectation, his expected utility under this deviation
is at least:

ui(b
′
i, b−i) ≥

∫ vi(OPT (v))

k

p1(b)

vi(OPT (v))f(t)dt− vi(OPT (v))

2

=

∫ vi(OPT (v))

k

p1(b)

k · dt− vi(OPT (v))

2

=
vi(OPT (v))

2
− k · p1(b)

By summing over all players and using the trivial fact that p1(b) ≤
∑

i Pi(b) we
get the theorem.

Theorem. For agents with fractionally subadditive monotone valuations the
Item-Bidding Mechanism is

(
1
2

(
1− 1

e

)
, n

)
-smooth.

Proof. To simplify the notation in the proof we will assume that k, the number
of chosen projects, is even. Consider a valuation profile v and a bid profile b. Let
OPT (v) be the optimal set of projects for valuation profile v. Let (v∗ij)j∈[m] be
the representative additive for player i for set OPT (v), i.e.

vi(OPT (v)) =
∑

j∈OPT (v)

v∗ij = max
ℓ∈L

∑
j∈OPT (v)

vℓij

Assume that items j are reorder such that projects 1 to k/2 are the ones with the
highest v∗ij in the above representative additive valuation. Hence, by definition,∑k/2

j=1 v
∗
ij ≥ 1

2vi(OPT (v)).
Suppose that agent i switches to b′i in which for each project j ∈ [1, . . . , k/2]

he draws an independent random number tj with density fj(tj) = 1
v∗
ij−tj

and



support [0, v∗ij(1− e−1)] and submits this random bid tj on project j ∈ OPT (v).
He submits a 0 on any other project. Let X(t) ⊆ [m] be the set of projects that
are chosen for some random draw t = (tj)j∈[m] of the deviating bids of player i.
Hence, a player’s utility from the deviation is:

ui(b
′
i, b−i) = Et

vi(X(t))−
∑

j∈X(t)

tj


Using the fractionally subadditive property of the valuation we know that vi(X(t)) ≥∑

j∈X(t) v
∗
ij . Thus:

ui(b
′
i, b−i) ≥ Et

 ∑
j∈X(t)

v∗ij − tj

 =
∑
j∈[m]

Etj

[
(v∗ij − tj) · 1j∈X(t)

]
Now, observe that for all j ∈ [m], tj ≤ v∗ij , by the definition of the deviating
bids. Thus, each term in the above sum is non-negative. Thus:

ui(b
′
i, b−i) ≥

k/2∑
j=1

Etj

[
(v∗ij − tj) · 1j∈X(t)

]
Let pt(b) denote the t-th highest total bid under the initial bid profile b. For any
j ∈ OPT (v), if tj > pk/2+1(b) then project j is definitely selected, since player
i is bidding non-positive on only k/2 projects and we know that the bids of the
rest of the players exceed pk/2+1 on at most k/2 projects. Thus we can lower
bound each term in the above sum as follows:

ui(b
′
i, b−i) ≥

k/2∑
j=1

Etj

[
(v∗ij − tj) · 1tj>p k

2
+1

(b)

]
≥

k/2∑
j=1

∫ (1−e−1)v

p k
2
+1

(b)

(v∗ij − tj)f(tj)dtj

=

(
1− 1

e

) k/2∑
j=1

v∗ij −
k/2∑
j=1

p k
2+1(b) ≥

(
1− 1

e

)
1

2
vi(OPT (v))− k

2
p k

2+1(b)

≥
(
1− 1

e

)
1

2
vi(OPT (v))−

k/2∑
j=1

pt(b) ≥
(
1− 1

e

)
1

2
vi(OPT (v))−

∑
i∈[n]

Pi(b)

Summing over all agents we get the theorem.

Theorem. When bidder valuations are unit-demand then the Item-Bidding
Mechanism is (1− e−1, n

k ) semi-smooth.

Proof. Consider a valuation profile v and a bid profile b. Let v∗ij be the maxi-
mum valued project of each player: i.e. v∗ij = maxj∈[m] vij . Suppose that each
player switches to the following randomized bid: he draws a random bid t from
distribution with density f(t) = 1

v∗
ij−t and support [0, (1 − e−1)v∗ij ]. Then he



submits this random bid on project j∗ = argmaxj∈[m] vij and submits a 0 on
all other projects. Let pt(b) be the total bid of the t-th highest valued project
under the initial bid profile b. For any j ∈ OPT (v), if tj > pk(b) then project j
is definitely selected. Thus a bidders utility from the deviation is at least:

ui(b
′
i, b−i) ≥

∫ (1−e−1)v∗
ij

pk(b)

(v∗ij − t)f(t)dt = (1− e−1)v∗ij − pk(b)

By summing up over all players and using the facts that
∑

i v
∗
ij ≥

∑
i vi(OPT (v))

and pk(b) ≤ 1
k

∑k
t=1 pt(b) =

1
k

∑
i Pi(b) (by the definition of prices) we get the

theorem. Observe that the deviation of the player depends only on his own
valuation and hence the extra semi-smoothness property is satisfied.


