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Large Scale Decentralized-Distributed Systems

Multitude of Diverse Users with Different Objectives
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Online Advertising



Centralized, engineered 
systems with clear 
objectives
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Platforms for 
interaction of diverse 
users
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Platforms for 
interaction of diverse 
users

Each optimizes their own objective

Strategic user behavior can cause inefficiencies.

Centralized, engineered 
systems with clear 
objectives
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Platforms for 
interaction of diverse 
users

Analyze efficiency of systems taking into 
account strategic behavior of participants

Design systems for strategic users

Centralized, engineered 
systems with clear 
objectives



Goods

CrowdsourcingInformation

Ad Impressions

9



Goods

CrowdsourcingInformation

Ad Impressions
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 Thousands of mechanisms run at the same time

 Players participate in many of them simultaneously or sequentially

 Environment too complex for optimal decision making

 Repeated game and learning behavior

 Incomplete information about environment (e.g. opponents)
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Goods

CrowdsourcingInformation

Ad Impressions
How should we design efficient mechanisms 

for such markets?

How efficient are existing mechanisms?
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How should we design mechanisms 
such that a market composed of such 
mechanisms is approximately efficient?
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A market composed of Smooth Mechanisms is 
globally approximately efficient at “equilibrium”
even under learning behavior and incomplete 
information.

We define the notion of a Smooth Mechanism.
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Vickrey (second-price) Auction 

Solicit bids

Award to highest bidder

Charge second highest bid

Classic Result. Dominant strategy 
equilibrium is efficient. Highest 
value wins

𝑏2

𝑏1

𝑏3

5

4

2

Pay 4
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𝑏1
𝐵

𝑏1
𝐴

𝑏2
𝐴

𝑏2
𝐵

𝐴

𝐵

Buyers want one camera

𝑣1 𝐴 ∅ = 2
𝑣1 𝐴 𝐵 = 1
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Buyers want one camera
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1
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𝟏

𝟎

𝟏

𝟎

𝐴

𝐵

Buyers want one camera
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Allocation is 

inefficient



A framework for robust and composable efficiency 
guarantees 
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Truthfulness doesn’t compose

No coordinator to run a centralized global truthful 
mechanism

Centralized mechanism too complex or costly to 
implement

rules with fast implementation 21



𝑏𝑖

𝑏1

𝑏𝑛

• Utility = Value-Payment: 

𝑢𝑖 𝐛 = (𝑣𝑖 − 𝑏𝑖) ⋅ 𝑥𝑖 𝐛

• Efficiency= Welfare

𝑆𝑊 𝐛 = 

𝑖

𝑣𝑖 ⋅ 𝑥𝑖 𝐛
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𝑣1

𝑣𝑖

𝑣𝑛



Classic Economics Approach

1. Characterize equilibrium

2. Analyze equilibrium properties
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𝑏𝑖

𝑏1

𝑏𝑛

• Characterize equilibrium strategy: b(v)
• Analyze equilibrium properties

Example. 𝑣𝑖 ∼ 𝑈[0,1] then 𝑏 𝑣𝑖 =
𝑣𝑖

2

𝑢𝑖 𝑏 = 𝑣𝑖 − 𝑏 Pr 𝑤𝑖𝑛 = vi − b 2b

Set derivative w.r.t. b equal to 0: 𝑏 =
𝑣𝑖

2

Marvelous theory! Revenue equivalence, Myerson’s 
BNE characterization etc.
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𝑣1

𝑣𝑖

𝑣𝑛



𝑏2

𝑏1

• Characterize equilibrium strategy: b(v)
• Analyze equilibrium properties

Example. 𝑣1 ∼ 𝑈[0,1] and 𝑣2 ∼ 𝑈[0,2] then?

𝑏1 𝑣 =
2

3𝑣
2 − 4 − 3𝑣2

𝑏2 𝑣 =
2

3𝑣
−2 + 4 + 3𝑣2

One uniform-one deterministic(Vickrey’61)
𝑈 𝑎, 𝑏1 , 𝑈[𝑎, 𝑏2]- Greismer et al ‘67
𝑈 𝑎1, 𝑏1 , 𝑈 𝑎2, 𝑏2 - Kaplan, Samier ‘12

25

𝑣1

𝑣2

Not scalable…
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𝑏1

• Characterize equilibrium strategy: b(v)
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𝑣1

𝑣2

Not scalable…



The Price of Anarchy Approach
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𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1
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𝑏𝑖

𝑏𝑛

• Pure Nash Equilibrium: 𝑏𝑖 maximizes utility

𝑢𝑖 𝐛 ≥ 𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢

Theorem. Any PNE is efficient.

Proof. Highest value player can deviate to 𝑝+

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 =𝑣1 − 𝑝

𝑢1 𝑝
+, 𝐛−𝐢 = 𝑣1 − 𝑝

+

 

𝑖

𝑢𝑖 𝐛 ≥

𝑝 = max
𝑖
𝑏𝑖

 

𝑖

𝑣𝑖𝑥𝑖 𝑏 − 𝑝 ≥ 𝑣1 − 𝑝

𝑏1
′ = 𝑝+

𝑏𝑖
′ = 0

𝑏𝑛
′ = 0

𝑢1 𝑏 ≥

𝑢𝑖 𝑏 ≥ 𝑢𝑖 0, 𝑏−𝑖 = 0



Pure Nash of Complete Information is very brittle

 Pure Nash might not always exist

 Game might be played repeatedly, with players using learning 

algorithms (correlated behavior)

 Players might not know other valuations

 Players might have probabilistic beliefs about values of 
opponents

30



time… …

𝑏1
1

𝑏𝑛
1

𝑏𝑖
1

…
…

𝑏1
2

𝑏𝑛
2

𝑏𝑖
2

…
…

𝑏1
3

𝑏𝑛
3

𝑏𝑖
3

…
…

𝑏1
4

𝑏𝑛
4

𝑏𝑖
4

…
…

𝑏1
𝑡

𝑏𝑛
𝑡

𝑏𝑖
𝑡

…
…

𝑏1
𝑇

𝑏𝑛
𝑇

𝑏𝑖
𝑇

…
…

Vanishingly small regret for any fixed strategy x: 

 

𝑡=1

𝑇

𝑢𝑖(𝑏
𝑡) ≥ 

𝑡=1

𝑇

𝑢𝑖 𝑥, 𝑏−𝑖
𝑡 − 𝑜(𝑇)

Many simple rules: MWU (Hedge), Regret Matching etc.

Auction 𝐴1 on

(𝑏1
1, … , 𝑏𝑖

1, … , 𝑏𝑛
1)

Auction 𝐴𝑡 on

(𝑏1
𝑡 , … , 𝑏𝑖

𝑡 , … , 𝑏𝑛
𝑡 )
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𝑏𝑖(𝑣𝑖)

𝑏1(𝑣1)

𝑏𝑛(𝑣𝑛)

𝑣1

𝑣𝑖

𝑣𝑛

𝐹1 ∼

𝐹𝑖 ∼

𝐹𝑛 ∼

Bayes-Nash Equilibrium: 

• Mapping from values to bids

• Maximize utility in expectation

𝐸𝑣−𝑖 𝑢𝑖 𝑏 𝑣 ≥ 𝐸𝑣−𝑖 𝑢𝑖 𝑏𝑖
′, 𝑏−𝑖 𝑣−𝑖

Expected equilibrium welfare

vs.

Expected ex-post optimal welfare
34



 What if conclusions for PNE of complete information directly 
extended to these more robust concepts

 Obviously: full efficiency doesn’t carry over

 Possible, but we need to restrict the type of analysis

35



𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑝 = max
𝑖
𝑏𝑖

𝑏1
′

• Recall. PNE is efficient because highest 

value player doesn’t want to deviate to 𝑝+

• Challenge. Don’t know 𝑝 or 𝐯−𝐢 in 

incomplete information

• Idea. Price oblivious deviation analysis

• Restrict deviation to not depend on 𝑝

𝑝+

36



Player 1 can deviate to 𝑏1
′ =
𝑣1

2

• Either 𝑝 𝐛 ≥
𝑣1

2

• Or 𝑢1
𝑣1

2
, 𝐛−𝟏 =

𝑣1

2

• In any case:

𝑢1
𝑣1
2
, 𝐛−𝟏 + 𝑝 𝐛 ≥

𝑣1
2

• Others can deviated to 𝑏𝑖
′ = 0:

𝑢𝑖 0, 𝑏−𝑖 ≥ 0
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𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1

𝑏𝑖

𝑏𝑛

𝑝 𝐛 = max
𝑖
𝑏𝑖

𝑏1
′ =
𝑣1
2

𝑏𝑖
′ = 0

𝑏𝑛
′ = 0



Player 1 can deviate to 𝑏1
′ =
𝑣1

2

38

𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑝 𝐛 = max
𝑖
𝑏𝑖

 

𝑖

𝑢𝑖 𝐛 ≥

 

𝑖

𝑢𝑖(𝐛) ≥
1

2
𝑣1 − 𝑝 𝐛

𝑆𝑊(𝐛) ≥
1

2
𝑂𝑃𝑇(𝐯)

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 ≥

1

2
𝑣1 − 𝑝(𝐛)

𝑏1
′ =
𝑣1
2

𝑏𝑖
′ = 0

𝑏𝑛
′ = 0

This guarantee extends to learning 

outcomes and to Bayesian beliefs.



time… …
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2
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2
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…
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3

𝑏𝑛
3

𝑏𝑖
3

…
…

𝑏1
4

𝑏𝑛
4

𝑏𝑖
4

…
…

𝑏1
𝑡

𝑏𝑛
𝑡

𝑏𝑖
𝑡

…
…

𝑏1
𝑇

𝑏𝑛
𝑇

𝑏𝑖
𝑇

…
…

Vanishingly small regret for fixed strategy 𝑏𝑖
′: 

1

𝑇
 

𝑡=1

𝑇

 

𝑖

𝑢𝑖 𝑏
𝑡 ≥
1

𝑇
 

𝑡=1

𝑇

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢
𝐭 − 𝑜 1

39

≥
1

𝑇
 

𝑡=1

𝑇
𝑣1
2
− 𝑝𝑡 − 𝑜(1)

1

𝑇
 

𝑡=1

𝑇

𝑆𝑊 𝑏𝑡 ≥
1

2
𝑂𝑃𝑇 𝐯 − 𝑜 1



𝑣1

𝑣𝑖

𝑣𝑛

𝐹1 ∼

𝐹𝑖 ∼

𝐹𝑛 ∼

• Deviation depends on opponent values

• Need to construct feasible BNE 

deviations

• Each player random samples the others 

values and deviates as if that was the 

true values of his opponents

• Above works, due to independence of 

value distributions

40

𝑏𝑖
′ 𝑣𝑖 , 𝑣−𝑖

𝑏𝑖
′′ 𝑣𝑖 = 𝑏𝑖

′ 𝑣𝑖 , 𝑤−𝑖



Player 1 can deviate to 𝑏1
′ =
𝑣1

2

41

𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑝 𝐛 = max
𝑖
𝑏𝑖

 

𝑖

𝑢𝑖 𝐛 ≥

 

𝑖

𝑢𝑖(𝐛) ≥
1

2
𝑣1 − 𝑝 𝐛

𝑆𝑊(𝐛) ≥
1

2
𝑂𝑃𝑇(𝐯)

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 ≥

1

2
𝑣1 − 𝑝(𝐛)

𝑏1
′ =
𝑣1
2

𝑏𝑖
′ = 0

𝑏𝑛
′ = 0

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 ≥

1

2
𝑂𝑃𝑇 𝐯 − 𝑝(𝑏) 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 ≥

1

2
𝑂𝑃𝑇 𝐯 − 𝑅𝐸𝑉 𝑏

Core Property

Exists 𝑏𝑖
′ don’t depend on current 𝐛



𝑏1

𝑏𝑛

𝑏𝑖 𝑋 𝐛 = 𝑋1 𝐛 ,… , 𝑋𝑛 𝐛

𝑃 𝐛 = 𝑃1 𝐛 ,… , 𝑃𝑛 𝐛

Utility = Value - Payment:

𝑣𝑖 𝑋𝑖 𝐛 − 𝑃𝑖 𝐛
Efficiency Measure: Social Welfare

𝑆𝑊 𝐱 = 

𝑖

𝑣𝑖(𝑥𝑖)
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Combinatorial Auctions

𝑏1

𝑏𝑛

𝑏𝑖

Utility = Value - Payment:

𝑣𝑖 𝑋𝑖 𝐛 − 𝑃𝑖 𝐛
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Public Projects

𝑏1

𝑏𝑛

𝑏𝑖

Utility = Value - Payment:

𝑣𝑖 𝑋𝑖 𝐛 − 𝑃𝑖 𝐛
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Bandwidth Allocation

𝑏1

𝑏𝑛

𝑏𝑖

Utility = Value - Payment:

𝑣𝑖 𝑋𝑖 𝐛 − 𝑃𝑖 𝐛
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Resource Sharing

𝑏1

𝑏𝑛

𝑏𝑖

Utility = Value - Payment:

𝑣𝑖 𝑋𝑖 𝐛 − 𝑃𝑖 𝐛

46
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Exist 𝑏𝑖
′ that don’t depend on current 𝐛

Definition (S.-Tardos’13)

𝜆, 𝜇 −Smooth Mechanism

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 ≥ 𝝀 ⋅ 𝑂𝑃𝑇 𝐯 − 𝝁 ⋅ 𝑅𝐸𝑉 𝐛For any 𝐛

Closely related to smooth games [Roughgarden STOC’09], giving an 

intuitive market interpretation of smoothness



 Extends no-regret learning outcomes of repeated game

 Extends to Bayesian Setting, assuming independent value 
distributions and even to no-regret under incomplete 
information.
 Extending Roughgarden EC’12 and S.’12 that used stricter universal 

smoothness property

Theorem (S-Tardos’13) Mechanism is (𝜆, 𝜇)-smooth, then 

every Nash Equilibrium achieves at least 
𝜆

max{1, 𝜇}
of OPT.

48



 Simultaneous Second Price Single-Item Auctions

Christodoulou, Kovacs, Schapira ICALP’08, Bhawalkar, Roughgarden SODA’11

 Auctions based on Greedy Allocation Algorithms

Lucier, Borodin SODA’10

 AdAuctions (GSP, GFP)

Paes-Leme Tardos FOCS’10, Lucier, Paes-Leme + CKKK EC’11

 Simultaneous First Price Auctions Single-Item Auctions

Bikhchandani GEB’96, Hassidim, Kaplan, Mansour, Nisan EC’11, Fu et al. STOC’13

 Sequential First/Second Price Auctions

Paes Leme, S, Tardos SODA’12, S, Tardos EC’12

All above can be thought as smooth mechanisms and some are even 

compositions of smooth mechanisms.
49



 First price auction: 1 −
1

𝑒
, 1 -smooth (Improves Hassidim et al. EC’12)

 First price combinatorial auction based on a 𝑎-approximate greedy algorithm is 
1 − 𝑒−𝑎, 1 -smooth (Improves Lucier-Borodin SODA’10)

 Marginal pricing multi-unit auctions is 1 −
1

𝑒
, 1 -smooth (Improves De Keijzer et al. 

ESA’13)

 All-pay auction: 
1

2
, 1 -smooth (New result)

 First price position auction is 
1

2
, 1 -smooth 

 Extends Paes Leme et al. FOCS’10 to more general valuations)

 Proportional bandwidth allocation mechanism is 
1

2
, 1 -smooth

 Extends Johari-Tsitsiklis‘05, to incomplete information and learning outcomes
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1

𝑖

𝑛

𝑣𝑖
1

𝑣𝑖
2

𝑣𝑖
3Unit-Demand Valuation

𝑣𝑖 𝑆 = max
𝑗∈𝑆
𝑣𝑖
𝑗
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𝑏𝑖
1

𝑏𝑖
2

𝑏𝑖
3

1

𝑖

𝑛

Unit-Demand Valuation

𝑣𝑖 𝑆 = max
𝑗∈𝑆
𝑣𝑖
𝑗
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𝑝1
𝑣𝑖
𝑗

2

𝑗𝑖
∗

Can we derive global efficiency guarantees from local 
1

2
, 1 −smoothness of each first price auction? 

APPROACH: Prove smoothness of the global 

mechanism

GOAL: Construct global deviation

IDEA: Pick your item in the optimal allocation 

and perform the smoothness deviation for your 

local value 𝑣𝑖
𝑗
, i.e. 

𝑣𝑖
𝑗

2

0

0

54



Smoothness locally: 

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 ≥

𝑣𝑖
𝑗𝑖
∗

2
− 𝑝𝑗𝑖

∗ 𝐛

Summing over players:

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 ≥

1

2
𝑂𝑃𝑇 𝐯 − 𝑅𝐸𝑉(𝐛)

Implying 
1

2
, 1 −smoothness property globally. 

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 ≥

1

2
⋅ 𝑂𝑃𝑇 𝐯 − 𝑅𝐸𝑉 𝐛
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𝑏𝑖
𝑗

𝑋𝑗 𝐛𝐣 = 𝑋1
𝑗
𝐛𝐣 , … , 𝑋𝑛

𝑗
𝐛𝐣

𝑃𝑗 𝐛𝐣 = 𝑃1
𝑗
𝐛𝐣 , … , 𝑃𝑛

𝑗
𝐛𝐣

Complex valuation over outcomes

𝑣𝑖 𝑋𝑖
1 𝐛𝟏 , … , 𝑋𝑖

𝑚 𝐛𝐦

𝑏𝑖
1

𝑏𝑖
𝑚

𝑋1 𝐛𝟏

𝑃1 𝐛𝟏
𝑋𝑚 𝐛𝐦

𝑃𝑚 𝐛𝐦

56
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Theorem (S.-Tardos’13) Simultaneous composition of 𝑚
mechanisms, each (𝜆, 𝜇)-smooth and players have no 

complements* across mechanisms, then composition is also 

𝜆, 𝜇 -smooth.

57



Across 
Mechanisms

 Marginal value for any allocation from some mechanism can only decrease, 
as I get non-empty allocations from more mechanisms

 No assumption about allocation structure and valuation within mechanism

…

…

59
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Global Efficiency Theorem.
A market composed of 𝜆, 𝜇 -Smooth Mechanisms achieves 
𝜆

max{1,𝜇}
of optimal welfare at no-regret learning outcomes and 

under incomplete information, when players have no-
complement valuations across mechanisms.
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 Sequential Composition 
Smooth mechanisms compose sequentially when values are unit-demand*. 

Tight via: Feldman, Lucier, S. “Limits of Efficiency in Sequential Auctions”

 Hard Budget Constraints on Payments
Same efficiency guarantees with respect to new welfare benchmark: 

Optimal welfare achievable after capping a player’s value by his budget

 Limited complementarities
 Global efficiency degrades smoothly with size of complementarities

 Feige, Feldman, Immorlica, Izsak, Lucier, S., “A Unifying Hierarchy of 
Valuations with Complements and Substitues” 61



 Revenue of non-truthful mechanisms via price of anarchy in multi-dimensional 
settings
 “Price of anarchy for auction revenue”: Hartline, Hoy, Taggart

 Other models of non-fully rational behavior: level-k, fictitious play
 “Level-0 Meta-Models for Predicting Human Behavior in Games”: J. Wright, K. Leyton-

Brown

 Simple auctions with simple strategies: good mechanisms with small strategy 
spaces (single knob to turn, simple to optimize over)
 “Utility target mechanisms”: Hoy, Jain, Wilkens

 “Simple auctions with simple strategies”: Devanur, Morgenstern, S., Weinberg

 Algorithmic characterization of smoothness in multi-dimensional environments 
(similar to cyclic monotonicity)

 Uncertainty about own valuation, information asymmetry 
 “Auctions, Adverse Selection, and Internet Display Advertising”, Arnosti, Beck, Milgrom

 Coalitional dynamics – analogues of no-regret dynamics with good welfare 
properties
 “Strong Price of Anarchy and Coalitional Dynamics”: Bachrach, S., Tardos, Vojnovic 62



Many simple mechanisms are smooth

Smooth mechanisms compose well 

Robust efficiency guarantees

Useful design and analysis tool for efficiency 
in electronic markets/distributed resource 
allocation systems

Thank you! 
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