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We introduce single-bid auctions as a new format for combinatorial auctions. In single-bid auctions, each
bidder submits a single real-valued bid for the right to buy items at a fixed price. Contrary to other simple
auction formats, such as simultaneous or sequential single-item auctions, bidders can implement no-regret
learning strategies for single-bid auctions in polynomial time. Price of anarchy bounds for correlated equilib-
ria concepts in single-bid auctions therefore have more bite than their counterparts for auctions and equilib-
ria for which learning is not known to be computationally tractable (or worse, known to be computationally
intractable [Cai and Papadimitriou 2014; Dobzinski et al. 2015] this end, we show that for any subaddi-
tive valuations the social welfare at equilibrium is an O(logm)-approximation to the optimal social welfare,
where m is the number of items. We also provide tighter approximation results for several subclasses. Our
welfare guarantees hold for Nash equilibria and no-regret learning outcomes in both Bayesian and complete
information settings via the smooth-mechanism framework. Of independent interest, our techniques show
that in a combinatorial auction setting, efficiency guarantees of a mechanism via smoothness for a very
restricted class of cardinality valuations extend, with a small degradation, to subadditive valuations, the
largest complement-free class of valuations.
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1. INTRODUCTION
The design of combinatorial auctions has been a major topic of interest in economics
as well as algorithmic game theory. The desiderata of efficiency (maximizing social
welfare), incentive compatibility, computability (of both the mechanism outcome and
equilibrium behavior for the participants), and simplicity are often not simultaneously
achievable and hence different mechanisms offer different tradeoffs. The VCG mech-
anism achieves optimal efficiency and is incentive compatible but its outcome is, in
general, not computable in polynomial time. The past decade has seen much success
in the design of polynomial time computable truthful mechanisms that obtain a frac-
tion of the optimal social welfare, and many obtain ratios that are quite good [Dughmi
et al. 2011; Dobzinski et al. 2006; Feige and Mirrokni 2007; Dobzinski et al. 2005;
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Lavi and Swamy 2005; Dobzinski 2007; Krysta and Vöcking 2012]. Unfortunately, all
known mechanisms guaranteeing a mo(1)-approximation (where m is the number of
items) are quite sophisticated, prohibiting them from broad practical use: mechanisms
should be easy for designers to implement and transparent to its participants.

In practice, the desire for simplicity seems to trump the desire for truthfulness, and
auctions such as sequential item auctions, where bidders submit sealed bids for each
item one at a time, or simultaneous item auctions, where each bidder instead reports
a separate sealed bid for each item all at once, are commonly used. A recent collection
of exciting work has proven that several simple auctions allocate items approximately
efficiently at various equilibrium concepts, further supporting their use [Bhawalkar
and Roughgarden 2011; Paes Leme et al. 2012; Feldman et al. 2013a; Syrgkanis and
Tardos 2012b]. However, a notable drawback of these auction formats is that none
of these equilibrium concepts is known to be computationally tractable and some are
even known to be computationally intractable [Cai and Papadimitriou 2014; Dobzinski
et al. 2015]. In other words, while these auctions are indeed simple from a design per-
spective, they are still quite complex from a strategic one. This realization motivates
the search for auctions with a simple design that are also strategically simple and have
a low price of anarchy.

As a notion of being strategically simple, we propose the concept of learnability: sup-
pose that the same auction is repeated many times, then a bidder should be able to effi-
ciently run a no-regret algorithm on his strategy space. (If each bidder does so, then the
joint empirical distribution of strategies converges to a correlated equilibrium.) This
does not require the bidder to have any information about his opponents; this is in
a sense a “zero information” setting, as opposed to the standard notions of complete
and incomplete information settings. Both sequential and simultaneous auctions have
strategy spaces of size Rm which is exponential in the number of items. Therefore, the
straightforward implementation of no-regret algorithms for these games would take
exponential time and space, and it is not known whether computationally efficient
no-regret algorithms exist for these auctions.1

Our Results.. In this paper, we introduce an extremely simple auction format that we
call a single-bid auction. In a single-bid auction, bidders submit a single real number
as their bid. They are then visited in decreasing order of bids, and each may pay their
bid per item for any number of remaining items. Below is a formal description.

(1) Initialize, for all i ∈ [n], Si = ∅, Pi = 0. The set of remaining items I = [m].
(2) Each bidder i ∈ [n] submits a sealed bid bi.
(3) Sort bidders in decreasing order according to their bids. Break ties arbitrarily.
(4) For i = 1 to n:
(5) Let i be the ith highest bidder.
(6) Bidder i chooses any set Xi ⊆ I.
(7) Bidder i pays her bid for each item in Xi, i.e., Pi = bi|Xi|.
(8) Update I = I \Xi.
(9) End For.

Importantly, the strategy space of single-bid auctions is simple enough so that one
can efficiently deploy no-regret algorithms. The strategic choices in a single-bid auction
consist of making a bid (Step 2) and selecting a set of remaining items to purchase
(Step 6). The space of possible bids is just R, but the space of possible sets to choose

1[Cai and Papadimitriou 2014] have some discussion of no-regret dynamics in simultaneous second price
auctions that indicates that such algorithms may not exist.
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is still exponential in m. However, a bidder’s dominant strategy in Step 6 is extremely
simple: once the auction reaches this phase, bidder i faces an item pricing and may
pay bi for any item in I and has nothing to gain by selecting any set besides Xi =
argmaxX⊆I{vi(X)−|X|bi}.2 In other words, when learning the effectiveness of different
strategies, bidder i needs only to learn over different potential bids and not also over
potential methods for choosing items to purchase.

The challenge, then, is to show that our auction achieves a good fraction of the opti-
mal social welfare at outcomes of no-regret learning algorithms (or, equivalently, cor-
related equilibria). Such bounds are called bounds on the price of anarchy (PoA), which
is the ratio of the optimal social welfare to the welfare at the worst possible equilib-
rium, for various equilibrium concepts. In a nutshell, we show that for subadditive
(a.k.a. complement-free) valuations, the price of anarchy of single-bid auction w.r.t.
correlated equilibria is at most e

e−1Hm where m is the number of items and Hm is the
mth harmonic number. In comparison, for the same class of valuations, the best de-
terministic and randomized truthful auctions achieve approximation factors of O(

√
m)

and O(logm log logm) respectively, and simultaneous first price auctions have a price
of anarchy of 2 w.r.t Bayes Nash equilibria. On the other hand, sequential item auc-
tions could have a price of anarchy of Ω(m) even for a much simpler class of valuations,
namely the union of additive and unit-demand valuations, even for Nash equilibria in
the complete information setting. This indicates that identifying the right auction is
important in order to get a price of anarchy such as O(logm).
Our main technical results are stated below:

THEOREM 1.1 (INFORMAL). There is a polynomial time no-regret learning algo-
rithm for a bidder participating in single-bid auction.

THEOREM 1.2. The single-bid auction has a price of anarchy of at most e
e−1Hm w.r.t

coarse correlated equilibria.

We prove Theorem 1.2 by developing a reduction of sorts from proving price of an-
archy bounds when bidders have subadditive valuations to proving PoA bounds when
bidders have considerably simpler valuations that we call constraint-homogeneous. A
bidder has constraint-homogeneous valuation if he has an interest set S and the same
obtains value v per item in S and 0 per item not in S. This reduction itself may be of
independent interest. The proof and formal statement of Theorem 1.2 can be found in
Section 3.

We also provide stronger PoA bounds for restricted classes of valuations, such as
unit-demand, concave-symmetric, and k-demand valuations in Appendix A. In Sec-
tion 3.1, we include a lower bound of Ω

(
logm

log logm

)
on the possible PoA for single-bid auc-

tions when we have additive bidders.
Finally, in Appendix B we provide PoA bounds for a sequential format of single-

bid auctions which we call draft auctions. A draft auction proceeds in rounds: each
bidder submits a bid in each round. The highest bidder in each round may pick any of
the remaining items, and pays her bid for each item she picks. We show an O(logm)
bound on the price of anarchy with subadditive bidders for draft auctions as well.
This offers a significant advantage over sequential item auctions, for which the price

2For simplicity, we assume throughout the body that bidder i can find Xi in polynomial time. If not, then
bidder i has no incentive not to select the best set of items to purchase that she can find computationally
efficiently, and our approximation ratios degrade naturally based on how well the bidders can perform this
optimization.
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of anarchy for even simple valuation classes such as the union of additive and unit-
demand valuations is Ω(m) [Feldman et al. 2013b].

1.1. Related work
Truthful Auctions.. The study of combinatorial auctions has long focused on the de-

sign of truthful auctions. Although the VCG mechanism is truthful and gives the so-
cially optimal allocation, it is not computationally efficient. Within the AGT commu-
nity, this computational barrier has spurred a lively line of research into designing
truthful mechanisms that run in polynomial time and approximate the social wel-
fare for various classes of valuations. The state-of-the-art for various instances are:
an O(logm log logm)-approximation when bidders are subadditive [Dobzinski 2007],
an O(logm)-approximation when bidders are fractionally subadditive [Krysta and
Vöcking 2012], and an e/(e − 1)-approximation when bidders have coverage valua-
tions [Dughmi et al. 2011]. These mechanisms (and others) are all quite impressive,
but have some drawbacks preventing them from being used in practice, such as being
noncombinatorial in nature, or having a high probability of completely ignoring many
participants.

Price of Anarchy.. More recently, an alternate approach has been to analyze simple
auctions that are commonly used in practice, by quantifying the inefficiency of equilib-
ria via the price of anarchy [Christodoulou et al. 2008; Bhawalkar and Roughgarden
2011; Hassidim et al. 2011; Feldman et al. 2013; Lucier and Borodin 2010; Paes Leme
and Tardos 2010; Lucier and Paes Leme 2011; Caragiannis et al. 2011; Syrgkanis and
Tardos 2012a; Paes Leme et al. 2012; Feldman et al. 2013b]. The dominating theme
here has been the emergence of a “smoothness” framework that captures many of the
price of anarchy bounds, and allows these bounds to be extended to larger classes of
equilibria: Roughgarden [2009] to outcomes of learning algorithms and Roughgarden
[2012] and Syrgkanis [2012] to games of incomplete information. Syrgkanis and Tardos
[2013] give a specialized smoothness framework for auctions with quasi-linear prefer-
ences, which we also use. The result most directly comparable to ours is that of Feld-
man et al. [2013], which shows that simultaneous item auctions have a constant price
of anarchy for subadditive bidders. The ratio is, of course, more desirable than ours.
However it is unknown how to compute any of the equilibria for which their PoA gu-
ranteees hold (even approximately) in polynomial time. So, without further research, it
is unclear whether one should expect bidders in simultaneous item auctions to play an
(approximate) equilibrium. In contrast, bidders can reach equilibria of single-bid auc-
tions in polynomial time via distributed no-regret learning, so it is quite reasonable to
expect strategic play to approach equilibrium.

Equilibrium Computation.. We conclude this section by briefly discussing positive
and negative results related to equilibrium computation in simple auctions. Lehmann
et al. [2001] showed how to efficiently compute a pure Nash equilibrium of simulta-
neous second-price auctions when bidders are submodular. Unfortunately, the equi-
librium computed is quite unnatural: it selects a desired winner for each item and
asks them to place a large bid on that item, and for all other bidders to bid 0. Even
though their construction finds an equilibrium where the large bids are not “over-
bids,” it is still clear that this equilibrium is unnatural: it is carefully constructed
by a centralized agent with a specific allocation in mind, and it asks bidders to play
dominated strategies (why bid 0 if you have any positive value for adding an item?).
To our knowledge, there are no other positive results regarding equilibrium computa-
tion in simple auctions. On the negative side, recently [Cai and Papadimitriou 2014]
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proved that it is PP-hard3 to find an exact Bayes-Nash equilibrium in simultaneous
second-price auctions with submodular bidders, and that it is also NP-hard to find
an ε-Bayes-Nash for some constant ε. They further extend their hardness to a no-
tion of ε-Bayes-Coarse-Correlated equilibria, and show that this equilibrium is also
NP-hard to find. Recently, Dobzinski et al. [2015] also show that computing pure
Nash equilibria of simultaneous second-price item auctions requires exponential com-
munication. This line of work work suggests that simple auctions with strong PoA
bounds which do not explicitly consider equilibrium computation may have less bite
in a computationally-constrained world. Our work addresses this concern as bidders
can run regret-minimization algorithms in polynomial time. A very recent paper of
Roughgarden explores formal barriers to obtaining mechanisms with low price of an-
archy Roughgarden [2014]. He shows, via a reduction to a communication complexity,
that no mechanism requiring sub-doubly-exponential communication can have a price
of anarchy better than 2 for subadditive bidders (achieved by simultaneous first price
auctions [Feldman et al. 2013]). It would be interesting to see if similar techniques
can provide formal barriers to designing mechanisms “like” single-bid auctions with
constant PoA.

1.2. Discussion and Future Work
Our paper contributes to the recent line of work addressing the design and analysis
of simple combinatorial auctions with low price of anarchy. We propose coarse corre-
lated equilibria of single-bid auctions as the first solution concept of a simple auction
that both has a low price of anarchy and can be computed in polynomial time. Our pa-
per also motivates several directions for future work. First, there are numerous ques-
tions related to the analysis of existing simple mechanisms, such as simultaneous item
auctions. For example, is there a poly-time no-regret algorithm for simultaneous item
auctions? It is conceivable that such algorithms exist despite the exponential strategy
space and evidence found in [Cai and Papadimitriou 2014]. If not, is there a different
equilibrium concept for simultaneous item auctions that is well-motivated, poly-time
computable, and has low price of anarchy? Or more generally, how should one expect
bidders to behave in a simultaneous item auction? Can one bound the price of anarchy
at this behavior?

Also motivated is the design of new simple auctions with learnable equilibria and a
constant price of anarchy. We note that doing so will require very different techniques
than the present work in a formal sense. One significant generalization of single-bid
auctions is the following: bidders first play an arbitrary game, where each bidder has
poly(m) possible strategies. Then, based on the strategies selected by each bidder, the
bidders are visited sequentially (in an order determined by the strategies played) and
each offered an item pricing over the remaining items (also determined by the strate-
gies played). Single-bid auctions are an extremely special case of these mechanisms,
where the game consists of each bidder simply making a bid, and the item pricing is
uniform over the remaining items (and the order of bidders is determined by simply
ranking their bids, and the uniform price offered is exactly their bid). Recent work
of [Braverman et al. 2015] shows that no auction of this general format can possi-
bly have a price of anarchy o(logm/ log logm) at any equilibrium concept. Therefore,
modifications to single-bid auctions such as asking the bidders to report multiple bids,
charging non-uniform prices, etc. cannot possibly improve the price of anarchy. We
therefore hope that future research will be fruitful in designing novel simple mecha-
nisms achieving low price of anarchy at learnable equilibrium concepts.

3PP is the class “BPP without the B,” and lies somewhere between the polynomial hierarchy and PSPACE.
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2. PRELIMINARIES AND NOTATION
Learnability and correlated equilibria.. We begin with a review of standard notions

from the online learning literature. Suppose there are N actions and T rounds. An
online algorithm A selects an action at ∈ [N ] (which is in general randomized and is
drawn from a distribution, say xt) in round t. An adversary selects a reward vector
rt ∈ [0, h]N ; rt is chosen with the knowledge of xt but not at. A receives reward rtat .
In the bandit setting, this is all A learns, as opposed to the experts setting, where A
learns the entire reward vector. We now define the regret of A.

DEFINITION 2.1. We say that algorithm A achieves regret R(T ) with respect to an
action sequence a′1, . . . , a′T if, for all reward vectors r1, . . . , rT ∈ [0, h]N ,∑T

t=1 E[rta′t
− rtat ] ≤ R(T ).

If A achieves regret R(T ) with respect to all fixed action sequences (a′1 = a′2 = . . . = a′T ),
we say that A achieves external regret of R(T ). If A achieves regret R(T ) with respect
to all action sequences f(a1), f(a2), . . . , f(aT ) for some f : [N ] → [N ], we say A achieves
swap regret of R(T ).

We say an algorithm is a no-regret algorithm if it achieves regret R(T ) = o(T ).
We say that a game is learnable if in the setting where the same game is repeated
many times, each player has a polynomial time learning algorithm that achieves ex-
ternal/swap regret of o(T 1−δ)4 over the set of all his strategies.

The single-bid auction induces a multi-player simultaneous move game among all
the bidders, where the strategy of bidder i is his bid bi. A tuple of bids b determines
the outcome of the auction; player i’s utility is ui(b) := vi(Si(b)) − Pi(b) where Si(b)
is the set of items i wins and Pi(b) is her total payment. Additionally, for any bid
tuple b, we denote with pj(b) the price that item j was sold at under b. Finally, let
h = maxi vi([m]) be the the maximum valuation any bidder has for the bundle of all
goods. Players may randomize their strategies, in which case the bids (and everything
else that depends on the bids) are random variables.

The standard notion of equilibrium used in such games is that of Nash equilibrium,
which says that no player can unilaterally deviate from the equilibrium strategy and
gain more utility for himself. We consider the relaxed concept of correlated equilibrium:
a central mediator suggests a particular strategy to each player, drawn jointly from
some distribution. This is a correlated equilibrium if each player, knowing the joint
distribution and his suggestion but not the suggestions to others, has no incentive to
deviate.

DEFINITION 2.2. Correlated equilibrium An α-correlated equilibrium is a joint
distribution X over bid vectors b such that, for each player i, following her suggestion
bi drawn from X is a best-response up to an additive error of α, in expectation over the
suggestions b−i, not known to i and assuming everyone else plays according to their
suggestion:

∀i,∀ b′i, Eb∼X [ui(b) | bi] ≥ Eb∼X [ui (b′i,b−i) | bi]− α
Note that the deviation b′i is allowed to depend on the suggestion. In the event that b′i

is independent of bi for all i, we call X an α-coarse correlated equilibrium.

A correlated equilibrium is an equilibrium of the static game in the complete informa-
ton setting. This means that, even if a player knows the types of all other players, and

4We insist that δ = Ω(1), so that convergence occurs in polynomially many rounds of running the no-regret
algorithms.
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the joint distribution from which the suggestions are being drawn, he will not deviate
from the suggested strategy. The following theorem relates an outcome in the repeated
setting when each player employs a no-regret learning algorithm to a correlated equi-
librium of the static game.

THEOREM 2.3 ([FOSTER AND VOHRA 1997], [HART AND MAS-COLELL 2000]).
Suppose that a game is repeated for T rounds and each player employs a no-regret

learning algorithm with external regret (resp. swap regret) of at most R. Then the joint
distribution over strategy tuples given by the empirical distribution of strategies played
by the players in each of the T rounds is an R/T -coarse correlated equilibrium (resp.
correlated equilibrium) of the static game.

Thus, for a learnable game, the empirical distribution over strategies when each player
runs a no-regret algorithm converges to a correlated equilibrium.

No-regret learning algorithms.. By Theorem 2.3, the rate of convergence to a cor-
related equilibrium will be governed by the regret achieved by each of the players’
learning algorithms. In each round, each bidder can compute her payoff from the bid
she chooses: it is her utility from that round. On the other hand, a bidder cannot know
what items would be available for her if her bid caused her to be later in the ordering:
she cannot compute her payoff for all bids. Therefore, we need algorithms which have
low regret in the bandit seting, rather than in the experts setting. Previous work has
given efficient algorithms with low external and swap regret in the bandit setting.

THEOREM 2.4 (AUER ET AL. [2003]; BLUM AND MANSOUR [2007]). There exist
efficient algorithms which achieve external regret (resp. swap regret) of at most√
hNT logN (resp. N

√
hNT logN ) in a bandit setting.

One option for each player is to employ the algorithms as given by the above lemmas
over the O(hm/ε) experts in the discretized bid space (0, εm ,

2ε
m , . . . , b

hm
ε c

ε
m , h). We state

the convergence rate obtained from such a discretization of bids below.

COROLLARY 2.5. If each player employs an algorithm with external regret (resp.
swap regret) as given by Theorem 2.4 on the discretized bid space as mentioned above,
then after O

(
h2m
ε3 log hm

ε

)
rounds (resp. O

(
h4m3

ε5 log hm
ε

)
rounds), the players have

reached an ε-approximate coarse correlated equilibrium (resp. correlated equilibrium).

Notice that the above convergence rates are pseudopolynomial (they depend poly-
nomially rather than polylogarithmically on h). Alternatively, we can discretize the
bid space as follows: [0, hεnm ,

2hε
nm , . . . , b

mn
ε c

hε
nm , h]. This reduces the total number of bids

in our discretization to O
(
nm
ε

)
. Furthermore, each bid b ∈ [0, h] is within an additive

hε
nm of some bid in the discretized bid-space, therefore this discretization allows us to
approach a hε

n -correlated equilibrium in polynomial time.

COROLLARY 2.6. If each player employs an algorithm with external regret (resp.
swap regret) as given by Theorem 2.4 on the discretized bid space as mentioned above,
then after O

(
n3m2

hε3 log
(
nm
ε

))
rounds (resp. O

(
n5m4

hε5 log
(
nm
ε

))
rounds), the players have

reached an hε
n -approximate coarse correlated equilibrium (resp. correlated equilibrium)

of the discretized bid space auction.

The total error of the discretization and approximation to correlated equilibrium is
additively O

(
hε
n

)
per bidder. So, the difference in welfare between this approximate

correlated equilibrium and an exact correlated equilibrium is at most O(hε). Since
h ≤ OPT , this is at most O(εOPT ). Thus, any approximation guarantee we prove
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for exact correlated equilibria will extend to these learnable approximate equilibria,
gaining at most an ε factor in the approximation guarantee.

Strategic Play and the Price of Anarchy.. Strategic play in many auctions can lead
to inefficient allocations of goods; furthermore, it is a priori quite difficult to predict
what types of strategic play might arise. In recent years, focus has shifted towards the
analysis of simple auctions via the price of anarchy: one proves claims of the form “as
long as bidders use strategies that form a Nash/correlated/coarse correlated/Bayes-
Nash equilibrium, the items are allocated approximately efficiently.” Formally, for
a given valuation profile v, let SW (OPT(v)) be the optimal social welfare, which is
the highest social welfare obtainable over all possible allocations of items to bidders.
SW (OPT(v)) := max

{∑
i∈[n] vi(Si) : (Si)i∈[n] is a partition of [m]

}
. Let T denote a par-

ticular set of equilibria, s an equilibrium in T and SW (s) the social welfare at this
equilibrium. Then the price of anarchy w.r.t equilibria in T is defined as

PoA(T ) := max
s∈T

SW (OPT(v))

SW (s)
.

Smooth Mechanisms.. Roughgarden [2009] introduced the notion of smooth games,
which was later extended by Syrgkanis and Tardos [2013] to the notion of smooth
mechanisms. The smooth mechanism framework provides a method by which to prove
Price of Anarchy bounds that hold simultaneously for Nash and correlated equilibria
in games of incomplete and complete information.

DEFINITION 2.7 ([SYRGKANIS AND TARDOS 2013]). A mechanism is (λ, µ)-
smooth for a class of valuations V = ×iVi if for any valuation profile v ∈ V, there exists
a mapping b′i : [0, h]→ ∆([0, h]) such that for all b ∈ [0, h]n:∑

i

E [ui (b′i(bi),b−i; vi)] ≥ λSW (OPT(v))− µ
∑
i

Pi(b) (1)

THEOREM 2.8 ([SYRGKANIS AND TARDOS 2013]). If a mechanism is (λ, µ)-smooth
then the price of anarchy w.r.t. mixed Bayes-Nash equilibria of the incomplete informa-
tion setting and correlated equilibria in the complete information setting is at most
max{1,µ}

λ . Furthermore, if the mapping b′i is independent of bi, then this result holds for
coarse correlated equilibria.

3. PRICE OF ANARCHY UPPER BOUND
To prove the upper bound on the price of anarchy of the single-bid auction for subad-
ditive valuations, we will establish that the single-bid auction is a

(
e−1
e·Hm

, 1
)

-smooth

mechanism, where Hm is the mth harmonic number. Our approach is the following: we
first show that the mechanism is

(
e−1
e , 1

)
-smooth for a very restricted class of valua-

tions which we dub constraint-homogeneous valuations (CHV). Each CHV is additive,
with value for each individual item either 0 or some value v̂, common for all items.
Then we show that smoothness of a mechanism for one class of valuations implies
smoothness for a more general class, as long as the latter class can be approximated
by the former within some factor (we use a non-standard notion of valuation approxi-
mation, which we precisely define in Lemma 3.3). Moreover, the smoothness property
degrades exactly by the factor of approximation. We conclude the proof by showing
that subadditive valuations can be approximated by CHV within a factor of Hm.

DEFINITION 3.1 (CONSTRAINT-HOMOGENEOUS VALUATION). A valuation on a set
of items is constraint-homogeneous if it is defined via an interest set S and a per-unit
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value v̂ such that:
∀T ⊆ [m] : v(T ) = v̂ · |T ∩ S| (2)

LEMMA 3.2 (SMOOTHNESS FOR CONSTRAINT-HOMOGENEOUS). The single-bid
auction is a

(
1− 1

e , 1
)
-smooth mechanism when players have constraint-homogeneous

valuations.

PROOF. Consider a constraint-homogeneous valuation profile v = (v1, . . . , vn) and
let S∗i be the set of items allocated to player i in the welfare maximizing allocation for
valuation profile v. We will show that there exists a randomized deviation B′i, which
does not depend upon the behavior of other agents, such that for any bid profile b =
(b1, . . . , bn):

E[ui(B
′
i,b−i)] ≥

(
1− 1

e

)
v̂|S∗i | −

∑
j∈S∗i

pj(b). (3)

where pj(b) is the price at which item j is sold under bid profile b, i.e. the bid of the
player that acquires it under b.

Suppose that player i deviates to some deterministic bid t ∈ [0, v̂]. Then for any
j ∈ S∗i , if t > pj(b), it means that when player i gets to pick his set of items, item j is
still available. Thus his utility from such a strategy is lower bounded by:

ui(t,b−i) ≥
∑
j∈S∗i

(v̂ − t) · 1{t > pj(b)} (4)

Thus if B′i is distributed according to density function f(t) = 1
v̂−t and support[

0,
(
1− 1

e

)
v̂
]

then:

E[ui(B
′
i,b−i)] ≥

∑
j∈S∗i

∫ (1− 1
e )v̂

pj(b)

(v̂ − t) · f(t) · dt =
∑
j∈S∗i

((
1− 1

e

)
v̂ − pj(b)

)
(5)

which is exactly the lower bound we wanted to show. Summing the latter lower bound
for every player, we get the

(
1− 1

e , 1
)
-smoothness property.

We will next show that smoothness for constraint-homogeneous valuations implies
smoothness for a much larger class of valuations. We achieve this based on the follow-
ing re-interpretation of the results in [Syrgkanis and Tardos 2013]5.

DEFINITION 3.3 (POINTWISE VALUATION APPROXIMATION). A valuation class V
is pointwise β-approximated by a valuation class V ′, if for any valuation v ∈ V , and
for any set S ⊆ [m], there exists a valuation v′ ∈ V ′ such that: βv′(S) ≥ v(S) and for all
T ⊆ [m]: v(T ) ≥ v′(T ).

Note that, importantly, the valuation v′ can depend on S. βv′ only needs to upper
bound v at S, while v′ needs to lower bound v everywhere else. This is much weaker
than the related notion of approximation by a function class, where for every v we ask
for a single v′ such that v is sandwiched between βv′ and v′ everywhere.

LEMMA 3.4 (EXTENSION LEMMA). If a mechanism for a combinatorial auction set-
ting is (λ, µ)-smooth for the class of valuations V ′ and V is pointwise β-approximated
by V ′, then it is

(
λ
β , µ

)
-smooth for the class V .

5[Hartline 2013] gives a special case of this re-interpretation for the mechanism defined by simultaneous
single-item auctions, showing how smoothness for additive valuations implies smoothness for unit-demand
(and XOS) valuations
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PROOF. Consider a valuation profile v = (v1, . . . , vn) where each valuation vi comes
from valuation class V . For each player i let S∗i be her optimal allocation under v and
let v∗ = (v∗1 , . . . , v

∗
n) be the valuation profile such that v∗i ∈ V ′ is the valuation that β-

approximates vi for set S∗i : i.e. β · v∗i (S∗i ) ≥ vi(Si) and for all T ⊆ [m]: vi(T ) ≥ v∗i (T ). By
the first property we get that β ·SW (OPT(v∗)) ≥ SW (OPT(v)). By the second property
we get that for all bid profiles b: ui(b; vi) ≥ ui(b; v∗i ). Let b′i : [0, h] → ∆([0, h]) be the
deviation mapping that is designated by the smoothness property of the mechanism
under v∗. Then for any bid profile b:∑

i

E [ui(b
′
i(bi),b−i; vi)] ≥

∑
i

E [ui(b
′
i(bi),b−i; v

∗
i )] ≥ λSW (OPT(v∗))− µ

∑
i

Pi(b)

≥ λ

β
SW (OPT(v))− µ

∑
i

Pi(b)

which implies the mechanism is smooth for the valuation class V .

To conclude the proof we show that sub-additive valuations can beHm-approximated
by constraint-homogeneous valuations.

LEMMA 3.5 (CONSTRAINT-HOMOGENEOUS Hm-APPROXIMATE SUBADDITIVE).
Subadditive valuations can be pointwise Hm-approximated by constraint-homogeneous
valuations.

PROOF. Consider a subadditive valuation v, some β, and some set of items X ⊆ [m].
Let hS denote the constraint-homogeneous function hS(T ) = v(X)

|S|β |T ∩ S|. It suffices to
find find S such that βhS(X) ≥ v(X) and also v(T ) ≥ hS(T ) for all T . We will either
find such an S or find an upper bound on β.

Consider S1 = X. Then, βhS1
(X) = βhX(X) = v(X), so the first inequality holds.

If v(T ) ≥ hS1
(T ) holds for all T , then hS1

pointwise β-approximates v at X. If not,
there exists some T1 such that v(T1) < hS1

(T1). Then, since v is monotone, v(T1 ∩ S1) ≤
v(T1) < hS1(T1) = hS1(T1 ∩ S1).

Iteratively, consider set Si = Si−1 \ Ti−1. As above, βhSi
(X) = v(X)

|Si| |X ∩ Si| = v(X),
so the first condition is satisfied by hSi

for all i. If for some i, v(T ) ≥ hSi
(T ) for all T ,

then hSi
pointwise β-approximates v at X. If not, then there exists some Ti such that

v(Ti) < hSi
(Ti).

After j ≤ m iterations, we have either found some hSi
which pointwise β-

approximates v at X, or we have constructed a partition T1, . . . , Tj of X such that for
all i

v(Ti) < hSi(Ti) =
v(X)

β|Si|
|Si ∩ Ti| ≤

v(X)

β|Si|
|Ti| (6)

Since v is subadditive: v(X) ≤
∑
i v(Ti). Thus, combining this with Equation 6,

v(X) <
∑
i

v(X)

β|Si|
|Ti| =

v(X)

β

∑
i

|Ti|
|Si|

.

Thus, β <
∑
i
|Ti|
|Si| . Now, we simply need to upper-bound

∑
i
|Ti|
|Si| to upper-bound β.

Notice that

|Ti|
|Si|

=

|Ti|−1∑
t=0

1

|Si|
≤
|Ti|−1∑
t=0

1

|Si| − t
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so we have as desired,

β <
∑
i

|Ti|
|Si|
≤
∑
i

|Ti|−1∑
t=0

1

|Si| − t
=

m−1∑
`=0

1

|X| − `
= Hm

To draw more connections to previous work, when the class V ′ is the set of general
additive valuations, then whether a class V can be pointwise β-approximated by V ′

is equivalent to asking whether the class V is β-fractionally subadditive, i.e. whether
there exist a set of additive valuations indexed by some index set L such that for any
S:

max
`∈L

v`(S) ≤ v(S) ≤ βmax
`∈L

v`(S) (7)

It is known that subadditive valuations are Hm-fractionally subadditive [Dobzinski
2007; Bhawalkar and Roughgarden 2011], or in other words, that subadditive valua-
tions can be pointwise Hm-approximated by additive valuations. Hence, our Lemma
3.5 can be viewed as a strengthening of this result, stating that general additive val-
uations are not needed and only additive valuations with only one possible non-zero
value for each individual item, suffices. This result can be of independent interest in
algorithmic and mechanism design questions for sub-additive valuations.

Combining Lemma 3.5 with the smoothness of single-bid auctions for constraint-
homogeneous valuations (Lemma 3.2) and the Extension Lemma (Lemma 3.4) we get
that the single-bid auction is

(
e−1
e·Hm

, 1
)

-smooth for subadditive valuations. Moreover,
observing that in all our proofs the smoothness deviation was a fixed strategy and not
a mapping, yields our main Theorem 1.2.

3.1. Almost Tight Lower Bound
This bound on the price of anarchy for single-bid auctions is nearly asymptotically
tight, even when restricted to additive bidders.

THEOREM 3.6. The price of anarchy of single-bid auctions at pure Nash equilibria
is at least Ω

(
logm

log logm

)
, even when all bidders are additive.

PROOF. For the sake of simplicity, assume that ties are broken lexicographically
when determining bid order throughout this proof. Consider the following bidders,
valuations, and items. Suppose there is a partition of the m items B0, . . . , Bk−1. Let
|Bt| = kt. Let bidder 0 have valuation v0 as follows. For each j ∈ Bt and each t, vo(j) =
kk−t: thus, vo(Bt) = kk for each t and v0([m]) = kk+1.

Then, for each j ∈ {0, . . . , k − 1}, let there be two bidders ij1, ij2 with valuations
vij1(i) = vij2(i) = v0(i)

k for all i ∈ Bj , and vij1(i) = vij2(i) = 0 for all i /∈ Bj . Notice that
if each of these “small” bidders bids v0(j)

k , then they are both playing a deterministic
best-response, irrespective of bidder 0’s bid.

Given that all of the “small” bidders are bidding kk−t

k for t ∈ {0, . . . , k − 1}, bidder
0 will bid exactly one of these numbers in equilibrium. Suppose she bids b0 = kk−t∗

k .
When she bids b0, all items in Bt∗ , . . . , Bk−1 will be available for her to purchase. Con-
sider some item j ∈ Bt for t > t∗+1: it is clear that v0(j) = kk−t < kk−t

∗−1 = kk−t∗

k = b0.
Thus, bidder 0 will not choose to buy any item in Bt∗+1, . . . , Bk−1. Then, she will buy
at most the sets Bt∗−1, Bt∗ , obtaining value vo(Bt∗−1 ∪Bt∗) = 2kk.
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Suppose Si is the set of items bidder i buys at this equilibrium. We just showed that
v0(S0) ≤ 2kk. For all i 6= 0, vi(Si) = v0(Si)

k , so
∑
i vi(Si) ≤ 2kk + (k − 2)kk−1 ≤ 3kk, while

the optimal social welfare is kk+1. Notice that m =
∑k
t=0 k

t = Θ
(
kk−1

)
. Thus, the price

of anarchy is at least Ω(k) = Ω
(

logm
log logm

)
.
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A. TIGHTER UPPER BOUNDS FOR SINGLE-BID AUCTION FOR SIMPLER VALUATIONS
In this section we show tighter price of anarchy bounds for two other important classes
of valuations: unit-demand and symmetric valuations. A valuation is unit-demand if a
player only wants one item and has no value for any extra item. Equivalently if it can
be expressed as: vi(S) = maxj∈S wij for some wij ≥ 0. A valuation is symmetric, if it is a
function of the number of items and not of the specific set, i.e. if all items are identical.
We will consider the case of concave symmetric valuations, i.e., vi(S) = fi(|S|) for some
non-decreasing concave function fi : N→ R+.

We show that both unit-demand valuations and concave symmetric valuations can
be pointwise 1-approximated by constraint-homogeneous valuations. As a corollary we
get that the price of anarchy of single-bid auctions for this case is at most e

e−1 .
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THEOREM A.1. The class of concave symmetric valuations is pointwise 1-
approximated by constraint-homogeneous valuations.

PROOF. Consider a valuation profile v as described in the theorem (i.e. v(S) =
f(|S|)). Consider a set S ⊆ [m] and let v′ be the constraint-homogeneous valuation
with interest set S and per-unit valuation v̂′ = f(|S|)

|S| . By concavity of the function f

and since f(0) = 0, we know that for any y > x, f(y)y ≤
f(x)
x . Thus we have that for any

T ⊆ [m]:

v′(T ) = v̂′ · |T ∩ S| = f (|S|)
|S|

· |T ∩ S| ≤ f (|T ∩ S|) ≤ v(T ) (8)

Additionally, v′(S) = f(|S|) = v(S).

LEMMA A.2. The class of unit-demand valuations is 1-approximated by constraint-
homogeneous valuations.

PROOF. For each set of items S, let j(S) = arg maxj∈S wij . Then consider the
constraint-homogeneous valuation v′, with v̂′ = wij(S) and interest set S = {j}. Then:
v′(T ) = wij(S) · 1{j(S) ∈ T} ≤ maxj∈T wij and v′(S) = wij(S) = v(S).

LEMMA A.3. The class of k-demand valuations is Hk-approximated by constraint-
homogeneous valuations.

PROOF. Consider k−demand valuation v and interest set S. We will construct a
constraint-homogeneous v′ such that v′(T ) ≤ v(T ) for all T but v′(S) ≥ Hkv(S). Let
S′ = argmaxS′′⊆S,|S′′|=kv(S′′). Then, v(S′) = v(S). Now, repeat the proof of Lemma 3.5,
beginning with set S′ instead of X. In the final line of the proof, |Ti| and |X| can be
replaced with k, rather than m, implying Hk as an upper bound on β.

B. DRAFT AUCTIONS
In this section, we formally define draft auctions, a sequential version of single-bid
auctions, and prove draft auctions have similar smoothness guarantees as we proved
for single-bid auctions. Draft auctions proceed in rounds: each round is a first-price
auction in which each bidder submits a bid. The winner in each round chooses some
subset of the remaining items, and pays her bid for each item. Formally, a draft auction
is as follows.

(1) Initialize, for all i ∈ [n], Si = ∅, Pi = 0. The set of remaining items I = [m].
(2) While I 6= ∅,
(3) Each bidder i ∈ [n] submits a sealed bid bi and a set Xi ⊆ I.
(4) Allocate set Xi∗ to i∗ = arg maxi∈[n]{bi}, i.e., Si∗ = Si∗ ∪ Xi∗ . Break ties

arbitrarily.
(5) Bidder i∗ pays her bid for each item in Xi∗ , i.e., Pi∗ = Pi∗ + bi∗ |Xi∗ |.
(6) The winner i∗, winning bid bi∗ and allocated bundle Xi∗ is announced.
(7) End While.

Suppose each bidder’s valuation vi ∈ Vi is drawn from a distribution: vi ∼ Di. Bidder
i knows vi but only Dj (rather than vj) for all j 6= i. Then, draft auctions form a se-
quential game of incomplete information (and, in the case that each Di is a point mass,
a sequential game of complete information). A strategy si : Vi → ∆(Bi) of bidder i is a
function, from her valuation to a distribution over bid plans bi ∈ Bi. Each bid plan bi
determines the bid bit that a player makes at some round t and the set Xit of items he
gets conditional on winning, based on the information hit available to her up to that
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round. For any given valuation profile v, a tuple of strategies b = s(v) = (si(vi))i∈[n]
determines the outcome of the auction; let ui(b; vi) denote the utility, (or expected util-
ity when b is a distribution over bid plans) obtained by bidder i as a function of the
bid plans b. Recall that for a deterministic profile the utility is vi(Si(b))− Pi(b) where
Si(b) is the set of items i wins and Pi(b) is her total payment. Additionally, for any
bid plan b, we denote with pj(b) the price that item j was sold at, under bid plan
b. Observe that a bid plan actually also contains information about what might have
happened, i.e., they specify the result of possible deviations from the actual outcome,
which becomes important in the definitions of equilibria. We now define the most basic
equilibrium concept, that of a Nash equilibrium.

DEFINITION B.1. A pure (resp. mixed) Bayes-Nash equilibrium is a pure (resp.
mixed) strategy tuple s such that no player can unilaterally deviate to obtain a better
utility. In other words,

∀ i ∈ [n],∀vi ∈ Vi,∀ b′i ∈ Bi, Ev−i
[ui(b

′
i, s−i(v−i); vi)] ≤ Ev−i

[ui(s(v); vi)],

where as is standard, s−i(v−i) denotes (sj(vj))j∈[n],j 6=i, the strategy tuple s restricted to
players other than i, and (b′i, s−i(v−i)) denotes the tuple where si(vi) is replaced by b′i
in s(v). Similarly v−i denotes the tuple of valuations (vj)j∈[n],j 6=i. The expectations are
taken over the draw of v−i.

A Nash equilibrium in sequential games allows for irrational threats, where an equi-
librium strategy of a bidder could be suboptimal beyond a certain round. A standard
refinement of the Nash equilibrium for extensive form games is the subgame perfect
equilibrium, that allows only for strategies that constitute an equilibrium of any sub-
game, conditional on any possible history of play (see [Fudenberg and Tirole 1991] for
a formal definition and a more comprehensive treatment.) Our results also extend to
complete-information correlated equilibria.

Subgame perfect ⊆ Nash ⊆ Correlated Equilibria

The price of anarchy may be defined w.r.t any of these equilibria; larger classes have
higher price of anarchy. In the Bayesian setting the price of anarchy is defined as the
worst-case ratio of the expectations, over the random values, of the social welfare at
the optimum Ev[SW (OPT(v))] and at an equilibrium Ev[SW (s(v))].

B.1. Smoothness of Draft auctions
We will show that draft auctions are smooth mechanisms according to the general
definition of a smooth mechanism, which has the same implications on the price of
anarchy as in Theorem 2.8.

DEFINITION B.2 ([SYRGKANIS AND TARDOS 2013]). A mechanism is (λ, µ)-
smooth for a class of valuations V = ×iVi if for any valuation profile v ∈ V, there
exists a mapping b′i : Bi → ∆(Bi) such that for all b ∈ B1 × . . .×Bn:∑

i

E [ui (b′i(bi),b−i; vi)] ≥ λSW (OPT(v))− µ
∑
i

Pi(b) (9)

There are two main technical hurdles in extending the arguments of smoothness for
single-bid auctions to draft auctions. Unlike single-bid auctions, draft auctions proceed
in rounds. This means that strategies are functions that map history to bids in each
round. Bidders’ deviations need to aim for particular items at their equilibrium prices.
So, a deviating bidder needs to behave as they do in equilibrium (to ensure she faces
equilibrium prices) until the right moment, at which point they bid the “right bid”, and
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procure the items they would get in the optimal allocation. The second difficulty is that,
unlike in sequential item auctions, a player is not aware, without information about
other bidders’ strategies, at which step any item is going to be allocated, since this is
endogenously chosen by one of his opponents. Thus, deviations of the form: “behave
exactly as previously until the optimal item arrives and then deviate to acquire it”,
will not yield smoothness proofs in the case of draft auctions.6 Instead, our deviations
for the unit-demand case have a player always attempt to get his optimal item, while
it is still available, without changing the observed history when she loses. We show a
deviation of the following form does just that: At each time step, as long as your optimal
item is still available, bid the maximum of your equilibrium bid and half your value
for your optimal item. If you ever win, buy your optimal item.

LEMMA B.3. The draft auction for unit-demand bidders is a ( 1
2 , 2)-smooth mecha-

nism.

Proof of Lemma B.3 : Consider a unit-demand valuation profile v (i.e. vi(S) =
maxj∈S vij) and let j∗i be the item assigned to player i in the optimal matching for
valuation profile v. We will show that there exists a deviation mapping b′i : Bi → Bi for
each player i, such that for any bid profile b:

ui(b
′
i(bi),b−i) ≥

1

2
vij∗i − pj∗i (b)− Pi(b). (10)

Consider the following b′i: in every auction t, the player bids the maximum of her pre-
vious bid bit (conditional on the history) and

vij∗
i

2 , until j∗i gets sold. If she ever wins
some auction, she picks j∗i . Suppose that j∗i was sold at some auction t under strategy
profile b. We consider the following two cases separately, which are exhaustive since i
drops out after round t at most.

Case 1: i wins an auction t′ ≤ t in b′i. . If i wins with bid bit′ then there must have
been her payment under bi as well, and Pi(b) = bit′ . Otherwise it is b∗i =

vij∗
i

2 .
Therefore her utility is

ui(b
′
i,b−i) ≥ vij∗i −max

{vij∗i
2
, Pi(b)

}
≥ vij∗i −

vij∗i
2
− Pi(b) ≥ 1

2
vij∗i − pj∗i (b)− Pi(b).

Case 2: i does not win any auction in b′i. . In this case, it must be that pj∗i (b) ≥
1
2vij∗i since otherwise i would have won auction t. Her utility in this case utility
is zero. Therefore (10) holds in this case as well.

Thus we have shown that the deviation b′i always satisfies (10). The smoothness
property follows by summing over all players and using the fact that

∑
i pj∗i (b) =∑

j∈[m] pj(b) =
∑
i Pi(b).

Thus, combining Lemma B.3 and Theorem 2.8, we have the following.

COROLLARY B.4. The price of anarchy for draft auctions with unit-demand bidders
is at most 4.

We now state that draft auctions are smooth for constraint-homogeneous valuations.
This implies that the price of anarchy bounds stated for single-bid auctions hold for

6Even in the complete information setting, the time at which an item sells is defined by the strategies of
other players: using this information to construct a deviation would not fit into the smoothness framework.
In the case of mixed strategies, or incomplete information, the time an item sells is a random variable, so
such a strategy is not even well-defined.
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draft auctions as well. Just like in the case of single-bid auctions, the need to buy many
items adds complexity to the proof of this corollary over the unit-demand setting.

LEMMA B.5. The draft auction is a ( 1
4 , 2)-smooth mechanism when bidders have

constraint-homogeneous valuations.

Before proving Lemma B.5, we state a separate lemma, which shows there always
exists a “good” deviation for constraint-homogeneous bidders in draft auctions.

LEMMA B.6 (CORE DEVIATION LEMMA FOR DRAFT AUCTIONS). Suppose that a
player i has a constraint-homogeneous valuation with interest set S and per-unit value
v̂. Then in a draft auction there exists a deviation mapping b′i : Bi → Bi such that, for
any strategy profile b:

ui(b
′
i(bi),b−i; vi) ≥

1

2

v̂ · |S|
2
−
∑
j∈S

pj − Pi(b).

We now use Lemma B.6 to prove Lemma B.5.
Proof of Lemma B.5 : Consider a constraint-homogeneous valuation profile v and a

bid profile b. Let S∗i be the units allocated to player i in the optimal allocation for profile
v. Also let Si be the interest set of each player and v̂i his per-unit value. Consider
the alternative valuation profile where each player i has a constraint-homogeneous
valuation v′i with interest set S′i = Si ∩ S∗i and per unit value v̂′i = v̂i.

Observe that for any T ⊆ [m], vi(T ) ≥ v′i(T ) and vi(S
∗
i ) = v′i(S

∗
i ). Thus, for any bid

profile b: ui(b; vi) ≥ ui(b; v
′
i) and SW (OPT(v′)) ≥ SW (OPT(v)). Invoking Lemma B.6 on

valuations v′i, we get that there exists a deviation mapping b′i : Bi → Bi for each player
i such that for any strategy profile b:∑
i

ui(b
′
i(bi),b−i; vi) ≥

∑
i

ui(b
′
i(bi),b−i; v

′
i) ≥

1

4
OPT(v′)−2

∑
i

Pi(b) ≥ 1

4
OPT(v)−2

∑
i

Pi(b),

where we have once again used the fact that
∑
i pj∗i (b) =

∑
j∈[m] pj(b) =

∑
i Pi(b).

Combining Lemma 3.5 with Lemma B.5 and Lemma 3.4, we get the following effi-
ciency guarantee for draft auctions with subadditive valuations.

COROLLARY B.7. The price of anarchy for draft auctions with subadditive bidders
is at most 8Hm.

The Core Deviation for draft auctions is somewhat more complicated than for single-
bid core deviation, because it is multi-stage and needs to mimic a bidder’s equilibrium
behavior. Just as in the case for single-bid auctions, the key deviation to prove smooth-
ness for draft auctions is to bid the “right price”, half of her per-unit value, and then
try to acquire the “right number” of those items, which is at least half the number of
units in her optimal allocation. However, consider a round where her equilibrium bid is
higher than the “right price”. If the bidder bids the right price, she may change the his-
tory for all the other players and sets the game down an off-equilibrium path. Once a
deviation has affected the winning history, the prices in the remaining off-equilibrium
subgame are difficult to reason about. Thus, the deviations we consider have a player
“mimic” her equilibrium play until shoe can acquire her optimal number of units at a
good price.

To achieve this, the deviation bids the maximum of the original bid and the right
price. If the original bid is higher, she follows the original strategy and picks the same
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set of items 7. If the right price is higher, she then buys sufficient number of items to
win the “right number” of units, and drops out of subsequent rounds. The following
lemma extends the Core Deviation lemma to the draft auction mechanism.

DEFINITION B.8 (CORE DEVIATION FOR DRAFT AUCTIONS). The core deviation
for draft auctions b′i for player i with a constraint-homogeneous valuation with interest
set S and per-unit value v̂ is defined as follows.

Let b∗i = v̂
2 . In every auction t, she submits b′it = max {b∗i , bit}. If she wins with bid b∗i ,

she buys s∗ − ki,<t units of S and drops out. If she wins with a bid of bit, she buys what
she did under bi: kit units together with any other items she was buying under strategy
profile bi at auction t. She continues to bid b′it until she acquires s∗ units or the number
of units remaining are not sufficient for her to complete s∗ units.

The crucial observation is this: as long as the player hasn’t already acquired s∗ units,
she has not affected the game path created by strategy bi in any way. From the per-
spective of the other bidders, she behaved exactly as under bi, by winning at her price
under bi and getting the items she would have got under bi. If she ever wins at a higher
price, she acquires all the units needed to reach s∗ units in that auction and then drops
out. Thus the prices that she faces in all the auctions prior to having won s∗ units are
the same as the prices under strategy bi.

The Core Deviation Lemma for draft auctions follows immediately from Lemmas
B.9, B.10, and B.11.

LEMMA B.9. If player i wins at least s∗ units of S under the Core Deviation for draft
auctions b′i then

ui(b
′
i(bi),b−i; vi) ≥

1

2
s∗v̂ − Pi(b).

PROOF. If player i wins at least s∗ units of S under b′i then the valuation for the
items she wins is at least s∗v̂. For the auctions in which she wins with a bid of bit she
pays a total amount of at most Pi(b) and for the (at most one) auction she wins with a
bid of b∗i she pays at most s∗b∗i . So her total payment is at most s∗b∗i+Pi(b) = s∗ v̂2+Pi(b).

LEMMA B.10. If player i wins fewer than s∗ units of S under the Core Deviation for
draft auctions b′i then

ui(b
′
i(bi),b−i; vi) ≥

1

2
s∗v̂ −

∑
j∈S

pj − Pi(b).

PROOF. Consider the auction under the original strategy profile b. Let (by an abuse
of notation) p1 ≤ p2 ≤ . . . ≤ p|S| be the prices at which the items in S are sold under b.
This is not necessarily the order in which they are sold. We show in Lemma B.11 that,
when bidder i wins fewer than s∗ units under b′i, it must be that ps∗ ≥ v̂

2 . Using this we
obtain that ∑

j∈S
pj ≥

|S|∑
l=s∗

pl ≥ (|S| − s∗ + 1) ps∗ ≥ s∗ps∗ ≥
v̂

2
s∗, (11)

where we also used the simple observation that s∗ ≤ |S|+1
2 .

7If the deviation were for the bidder to buy all the right number of units when she won because of her
equilibrium bid, she might pay too much for them.
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The total payment of player i under b′i in this case where she wins fewer than |S|/2
units of S is at most Pi(b), therefore her utility is (trivially) at least−Pi(b). The lemma
now follows from adding the inequalities ui(b′i(bi),b−i; vi) ≥ −Pi(b) and 0 ≥ v̂

2s
∗ −∑

j∈S pj (which holds by inequality (11)).

LEMMA B.11. If player i wins fewer than s∗ units of S under the Core Deviation b′i
then the s∗-th lowest price of the units in S under b, is at least v̂/2.

PROOF. First, observe that if player i was obtaining at least s∗ units under b then
she is definitely winning s∗ units under b′i, since she is always bidding at least as high.
So, we can assume that under b player i wins fewer than s∗ units.

Recall that p1 ≤ p2 ≤ . . . ≤ p|S| are the prices at which the units in S are sold under
b. Let Pt be the price of auction t (under b). Let t∗ be the first auction that was won at
price Pt∗ ≤ ps∗ under b but not by bidder i. We know that such an auction must exist;
under b there are s∗ units of S that are sold at a price at most ps∗ , and since player i
wins fewer than s∗ of them, some of them are not won by player i.

We now argue that player i is still bidding in auction t∗ under b′i. First of all, she has
not won s∗ units prior to t∗. The other condition needed for her to be active is that there
are at least s∗ − ki,<t∗ units available for sale in that auction. This follows from the
fact that for any auction t < t∗ for which Pt ≤ ps∗ , we know that player i was winning
under bi. Thus every unit that was sold prior to t∗ at a price of less than or equal to ps∗
was sold to player i. There are s∗ units sold at a price ≤ ps∗ and the number of such
units sold prior to t∗ is at most the number of total units won by bidder i prior to t∗.
Thus the number of available units available at t∗ is at least: s∗ − ki,<t∗ .

Finally, we argue that Pt∗ ≥ b∗i . Suppose for the sake of contradiction that Pt∗ < b∗i .
Then player i wins auction t∗. Since she was not winning t∗ under bi, it must be that
she is winning t∗ with a bid of b∗i . Thus in that auction she will buy every unit needed
to reach s∗ units. By the analysis in the previous paragraph, we know that there are
still enough units available for sale to reach s∗. Thus in this case she will win s∗ items,
a contradiction with the main assumption of the Lemma. Therefore, b∗i ≤ Pt∗ and by
definition, Pt∗ ≤ ps∗ and b∗i = v̂

2 .

An easy corollary of the above core deviation lemma is that when all players have
constraint-homogeneous valuations, the draft auction is a

(
1
4 , 2
)
-smooth mechanism,

and thus has a price of anarchy of at most 8 for these valuations.
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