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ABSTRACT
Typical models of strategic interactions in computer science
use simultaneous move games. However, in applications si-
multaneity is often hard or impossible to achieve. In this pa-
per, we study the robustness of the Nash Equilibrium when
the assumption of simultaneity is dropped. In particular
we propose studying the sequential price of anarchy: the
quality of outcomes of sequential versions of games whose
simultaneous counterparts are prototypical in algorithmic
game theory. We study different classes of games with high
price of anarchy, and show that the subgame perfect equi-
librium of their sequential version is a much more natural
prediction, ruling out unreasonable equilibria, and leading
to much better quality solutions.
We consider three examples of such games: Cost Sharing

Games, Unrelated Machine Scheduling Games and Consen-
sus Games. For Machine Cost Sharing Games, the sequen-
tial price of anarchy is at most O(log(n)), an exponential
improvement of the O(n) price of anarchy of their simultane-
ous counterparts. Further, the subgame perfect equilibrium
can be computed by a polynomial time greedy algorithm,
and is independent of the order the players arrive. For Un-
related Machine Scheduling Games we show that the sequen-
tial price of anarchy is bounded as a function of the number
of jobs n and machines m (by at most O(m2n)), while in the
simultaneous version the price of anarchy is unbounded even
for two players and two machines. For Consensus Games we
observe that the optimal outcome for generic weights is the
unique equilibrium that arises in the sequential game. We
also study the related Cut Games, where we show that the
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sequential price of anarchy is at most 4. In addition we study
the complexity of finding the subgame perfect equilibrium
outcome in these games.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics; F.2.2
[Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems

General Terms
games, economics, algorithms

Keywords
price of anarchy, subgame perfect equilibrium, extensive form
games

1. INTRODUCTION
A powerful line of algorithmic research over the past decade

has developed techniques for analyzing systems composed of
self-interested agents. Typical models of the strategic inter-
actions of agents use simultaneous move games: each player
or participant, simultaneously chooses an action, such as
submitting a bid in an auction, or simultaneously select-
ing strategies in a routing game. However, simultaneity is
often hard or impossible to achieve in implementations. In
this paper, we propose studying the sequential price of anar-
chy: the quality of outcomes of sequential versions of games
whose simultaneous counterparts are prototypical in algo-
rithmic game theory.

We consider games with high price of anarchy. In many
such games the equilibria resulting in the high price of an-
archy require “unnatural” coordination from the players. A
typical example arises in cost-sharing: when players control
a job to be scheduled, it might be unreasonable to simulta-
neously ask them to decide which machine they will use, and
unnatural to expect that they will all select the same expen-
sive machine, even if this is an equilibrium of the game. It is
more natural to allow players to select machines sequentially.
We will show that the sequential decision making helps avoid
bad equilibria in this game and a number of other games,
and results in exponential (or better) improvement in the
price of anarchy.

We consider full information sequential games, and mea-
sure quality of outcomes using subgame perfect equilibrium
(Spe), capturing sequential rationality of the players. There
is a large body of work on online games (see [22] for a sur-
vey), where players have to make strategic decisions without



having any information about the future. Sequential games
model the strategic behavior of agents who anticipate fu-
ture strategic opportunities. While the full information as-
sumption we make may be too strong in many applications,
participants often do have knowledge about their future op-
tions and strategically anticipate opportunities, in a way not
possible in online games. Studying sequential games offers
insight in the effect of the sequential rationality of the play-
ers. Full information sequential games model scenarios in
distributed systems where the game is close to simultane-
ous: players choose strategies in fast succession, but sequen-
tial choices allow the players to avoid unfortunate equilibria.
Subgame perfect equilibrium in games with a single player

acting in each step has the nice feature of generally produc-
ing an unique outcome, and we show here that in many
games this outcome has good quality. Unfortunately, this
outcome can be hard to compute in some games. How-
ever, despite the high worst case complexity, calculating
subgame perfect equilibrium is a long studied problem in
the AI literature. Many methods were developed to play
board games like chess and checkers which are sequential in
nature. An example is the celebrated alpha-beta search, first
documented in Hart and Edwards [15], but whose origins
date back to undocumented sources in the 50’s, as described
in a survey by Knuth and Moore [17].

Our Results. In section 3 we considerMachine Cost Shar-
ing Games. Players correspond to jobs, and decide se-
quentially on a machine to assign their job to . Each machine
has a cost (possibly a cost increasing with congestion), and
the players selecting a machine share the cost evenly. This
congestion game has been extensively studied [2] for the so-
cial welfare, the total cost of all machines. It is known to
have price of anarchy n, the number of players; while the
price of stability is Hn = O(log n). We show that there is
a unique Spe under generic costs, and show that the Price
of Anarchy of subgame perfect equilibrium is bounded by
Hn = O(logn). The sequential reasoning guarantees that
the agents avoid the bad equilibria, resulting in an expo-
nential improvement over the simultaneous version. We also
show that the subgame perfect equilibrium can be computed
in polynomial time, and the equilibrium doesn’t depend on
the order the players arrive.
In section 4 we consider Unrelated Machine Schedul-

ing: Each player controls a job that has a (potentially) dif-
ferent processing time on each machine. Players schedule
jobs in one ofmmachines sequentially and experience the to-
tal processing time of their chosen machine. We evaluate the
system using the classical measure of the makespan, the to-
tal processing time of the machine with maximum load. The
classical simultaneous version of this game has unbounded
Price of Anarchy (even for n = m = 2). Sequential reason-
ing helps agents to evade from bad equilibria. For subgame
perfect equilibrium, we prove that the price of anarchy is
bounded as a function of the number of jobs n and number
of machines m, giving an upper bound of O(m · 2n), and a
lower bound of n on the sequential price of anarchy.
In section 5 we consider Consensus and Cut Games.

There are some parties (say red or blue). Players affiliate
to one of the parties one by one. In the consensus game
players incur a cost from the players in the different party.
The simultaneous version of consensus can have arbitrarily
bad equilibria [5]. Generically, the only equilibrium of the

sequential version is the optimal solution. We also study
the version of the game when players derive utilities, rather
than costs, from the players in the other party, which we
call cut game. This class of games was introduced in [11]
as party-affiliation games and revisited many times later, as
for example in [5]. We show that the price of anarchy of the
sequential version is bounded by 4.

At last, in section 6 we study the complexity of comput-
ing a subgame perfect equilibrium. Recall that for the ma-
chine cost-sharing problem studied in section 3 the unique
subgame perfect equilibrium can be computed in polynomial
time. Unfortunately, for other problems finding the subgame
perfect equilibrium can be hard. We show that for the unre-
lated machine scheduling and general congestion games com-
puting a subgame perfect equilibrium is PSPACE-complete.

Related Work. We consider classes of games with bad price
of anarchy, where we believe that the bad equilibria require
unnatural coordination from the players. Machine cost shar-
ing games are a special case of the network cost sharing
introduced by Anshelevich et al. [2], and are sometimes
also called set-cover games, for example, in [4], and have a
price of anarchy equal to the number of players. Machine
Scheduling Games, also called Load Balancing Games, are
among traditional applications of Price of Anarchy analy-
sis - they are studied in the seminal paper of Koutsoupias
and Papadimitriou [18], and in the general form have an
unbounded price of anarchy even for two jobs and two ma-
chines. Consensus games were introduced in [5], who show
an arbitrarily bad price of anarchy.

In all of the above games, the examples with bad price
of anarchy appear to require rather unnatural coordination
from the players. Giving a solution concept for these games
with better price of anarchy is an important open problem
in the area. There have been several attempts in the liter-
ature to introduce solution concepts that rule out the bad
examples, and results in a small price of anarchy.

Solution Concepts with Improved Price of Anar-
chy. Andelman et al. [1] proposed the study of Strong
Nash Equilibria; outcomes that are stable under group devi-
ations. They showed that for the unrelated machine schedul-
ing games the Strong Price of Anarchy is at most 2m − 1,
where m is the number of machines and that strong equi-
libria always exist. Later, Epstein et al. [10] showed that
the Strong Price of Anarchy of cost sharing games is Hn =
O(logn), same as our bound for Subgame Perfect Equilibria.
Strong Equilibria assume collective rationality, and requires
players to collaborate, while Spe assumes only individual
rationality. Moreover, unlike Subgame Perfect Equilibria,
Strong Equilibria are not guaranteed to exist, which limits
its applicability.

Chekuri et al. [8] study the case where players arrive
sequentially playing myopically and then perform best re-
sponse until they reach a Pure Nash Equilibrium. They
prove that for the case of Multicast Cost Sharing on an
undirected network the price of anarchy of any Pure Nash
Equilibrium reached by the above process is O(

√
n log2(n))

times the optimal. This was later improved to O(log3(n))
by Charikar et al [7]. While their model is similar to ours,
as it also incorporates the fact that players act sequentially,
they assume that players are myopic. In contrast, we as-
sume players are strategic and choose their current actions
taking into account future implications. Moreover, due to



myopic playing their analysis doesn’t carry over to the ma-
chine cost sharing games that we analyze. In fact, it is easy
to find examples where the price of anarchy remains O(n)
even when players arrive sequentially and play myopically:
when the optimal solution involves large number of players
sharing a machine, myopic players do not find this solution.
In some cases noisy best response is also known to lead to

improved price of anarchy. Chung et al. [9] study the price
of anarchy of stochastically stable states of noisy imitation
dynamics. They show that the price of anarchy of such
states is bounded in the case of unrelated machine schedul-
ing. Montanari et al. [20] study the speed of convergence
of logit dynamics (noisy best response) in network coordi-
nation games, a model similar to consensus games, to the
optimal outcome, which is the unique stochastically stable
state. However, most of these dynamics have a very slow
speed of convergence in the models that we study. Balcan et
al [6] shows that there are instances of machine cost sharing
games where no type of noisy dynamics can achieve a price
of anarchy smaller than n/ log(n) in a polynomial number of
steps. The prediction that a stochastically stable state will
arise is not applicable to cases where convergence is slow, as
is the case in some of the games that we study.
To avoid the slow convergence Balcan et al [6] consider

the case when a central authority advertises strategies and
players either adopt them with some constant probability or
play best response. They showed that for cost sharing games
the dynamics will reach states with price of anarchy at most
log(n) log(nm) in a polynomial number of steps and for con-
sensus games the optimal outcome will arise if players adopt
the advertised strategy with probability at least 1/2. How-
ever, Balcan [5] showed that this approach fails for the case
of unrelated machines. Moreover, this technique assumes
the existence of a central authority that computes optimal
strategy profiles and that players trust at some level.
Extensive Form Games. In this paper we study the

price of anarchy for sequential version of the above games.
The study of extensive form games dates back to the first
formal studies of Game Theory. The extensive form predates
even the normal form. Starting from the first formal work
on chess by Zemelo [27] and then by von Neumann [26] who
first introduced the extensive form for games with perfect
information. A detailed exposition of classic literature on
extensive form games and multi-stage games can be found
in [12].
Some previous works in the literature have studied effi-

ciency in extensive form games, especially in the context of
auctions (e.g. [3]). Recently in [21], we analyze the quality
of outcomes in sequential auctions. In the setting considered
there, players have valuation over bundles of items and the
auctioneer holds a first-price auction for one item at a time.
We analyze existence of equilibrium and quality of outcomes
for different classes of valuation functions. The techniques
in [21] are, however, very different from those in the current
paper.
Sequential games studied here have unique equilibria (as-

suming generic costs), and in this sense are analogous to
equilibrium refinement. Like our subgame perfect equilib-
rium, many equilibrium refinements, such as those of Harsanyi-
Selten [14], or Homotopy methods [16], were recently shown
by Goldberg, Papadimitriou and Savani [13] to be PSPACE-
complete. Interestingly though, for machine cost-sharing
games the Spe is easy to find.

2. SEQUENTIAL GAMES
We consider games that happen in a sequence of rounds,

where a single player acts in each round. Given n players
with action sets A1, . . . , An, utility functions ui : ×iAi → R
for each player and an ordering of the players, say player
1, 2, . . . , n.

In each round i, player i observes the actions chosen by
players 1, 2, . . . , i− 1 and chooses an action ai ∈ Ai. There-
fore, the strategy of player i is a mapping si : A1 × . . . ×
Ai−1 → Ai.

Given the strategies, the outcome a = (a1, . . . , an) is de-
fined recursively: a1 = s1(∅), a2 = s2(a1), a3 = s3(a1..2), . . .,
ai = si(a1..i−1). Player i then experiences utility ui(a1..n),
where ai..j is the vector (ai, ai+1, . . . , aj).

Given a prefix (α1..k) ∈ A1×. . .×Ak for some k < n, it de-
fines an induced subgame for players k+1, . . . , n in the natu-
ral way: we define the outcome to be ai = si(α1..k, ak+1..i−1)
and players experience utilities ui(α1..k, ak+1..n).

A set of strategies (s1, . . . , sn) is a subgame perfect
equilibrium (Spe) if it is simultaneously an equilibrium
of all subgames defined by its prefixes. Clearly a subgame
perfect equilibrium is a Nash equilibrium of the original se-
quential game since it corresponds to the prefix game with
empty prefix.

Subgame perfect equilibria always exist, and can be easily
found by backwards, induction: Let hi(a1..i) be the outcome
in the subgame defined by the prefix a1..i. Now we have that
hn(a1..n) = ∅, and for i = n− 1, n− 2, . . . , 1, we define

hi(a1..i) = (si+1(a1..i), hi+1(a1..i, si+1(a1..i)))

si(a1..i−1) ∈ argmaxx∈Ai
ui(a1..i−1, x, hi(a1..i−1, x))

Note that if the utility functions are such that the argmax
is a single element (say for example if the entries of the
utility matrix are all different), then the Spe is unique. The
concepts presented above are a special case of extensive
form games (see [12] for a comprehensive treatment and a
more general definition).

Given a welfare function W : ×iAi → R+, we quantify the
sequential price of anarchy (SPoA) of the game as the
ratio between the optimal solution (measured in terms ofW )
and the quality of the worse subgame perfect equilibrium.
If Spe ⊆ ×iAi are the action profiles that can happen in
a subgame perfect equilibrium and W ∗ = maxa∈×iAi W (a),
then we define:

SPoA = max
a∈Spe

W ∗

W (a)

If the game is defined in terms of a cost function (where the
optimum is the solution of minimum cost) then we simply
invert the numerator and denominator.

3. MACHINE COST SHARING GAMES
Consider the following cost sharing game: there is a set N

of n jobs and a set R of m machines. Each job i has a set of
machines Ri from which he can choose and each machine r is
associated with a decreasing cost function γr(x). The game
played is the following: each job is a player and its strategy
is to choose a machine si ∈ Ri. The cost of a player in a
strategy profile s is then given by:

ci(s) = γsi(nsi) where nr = |{j ∈ N ; sj = r}|



A very well studied case is that of fair cost allocation,
where the cost function of a machine r has the form: γr(x) =
cr/x, capturing the case where each machine has a fixed cost
that has to be covered by the people using it and this cost
is equally split among the players. In general, we can think
of the cost of running a machine r with congestion x as
cr(x) = xγr(x), and then the cost of a player is the fair
share γr(x) = cr(x)/x. We will assume that the cost γr(x)
satisfies a natural economy of scale and is decreasing in x.
This class of games was introduced by Anshelevich et al.

[2], who study a simultaneous move game and show that
the Price of Anarchy is n while the Price of Stability of
this game is O(logn) under the social cost function C(s) =∑

i ci(s), when the machine cost functions have the form
γr(x) = cr(x)/x with a concave function cr(x). above.
The worst case PoA example is when there are two ma-

chines of costs 1+ε and n and each player can have access to
both of these machines. It is a Nash equilibrium for all play-
ers to choose the machine that costs n since all the players
have cost 1 and they don’t want to switch alone and increase
their cost to 1+ ε. This worst case example breaks if players
arrive sequentially. Informally, they can choose the cheaper
machine and rely on the rationality of the following players
that they will do the same. In fact, if players arrive in some
fixed order and play an Spe, we show that the worst possible
efficiency deterioration is exponentially better than that in
the simultaneous move version.
To simplify the presentation, we will focus on the simple

case of fair cost sharing (γr(x) = cr/x) and it is easy to see
that they extend to the more general case.
We say that the machines have generic costs if cr/k 6=

cr′/k
′ for two different machines r 6= r′ and any 1 ≤ k, k′ ≤

n. Any cost vector c can be made generic with a small
random perturbation.

Theorem 1 For any machine cost sharing game with fair
cost allocation and generic costs, there is a unique Spe and
it is within an O(logn) factor from the optimal. Moreover,
it can be computed by a natural greedy algorithm. When the
costs are not generic, there may be more then one Spe but
the Price of Anarchy bound still holds.

Proof. For simplicity we will consider generic costs only.
Notice that the problem of finding s to minimize C(s) can
be modeled as set cover: the players are elements and each
machine is represented by the set of players it can serve. So,
the objective is to find the set of machines minimum cost
that covers all the players. There is a classic O(logn) greedy
approximation algorithm for this problem: while there are
elements that are not covered, pick the set that has the
smallest ratio of cost to number of uncovered elements.
We show that the outcome of this greedy algorithm is the

unique subgame perfect equilibrium of this game. To solve
the game, we calculate for t = n, n− 1, . . . , 1 the best move
player t has on each node, a unique move by the generic costs
assumption. Now, we show that in the backwards-induction
solution, all players play according to the greedy algorithm.
Let r1, r2, . . . , rk be the machines in the order picked by the
greedy algorithm and let Nj be the players that were first
allocated to machine rj .
To show the greedy outcome is the backwards-induction

solution it suffices to show that no player wants to deviate
on its turn. First, consider the players in N1. They have cost
cr1/|N1|. Notice that this is the smallest cost any player can

incur, so the last in N1 to play will definitely choose r1, given
that the previous players in N1 did so. Now, consider the
second to last player in N1. Given that all previous players
in N1 played r1, he also prefers to play r1, since he knows
that by doing so, the last player will play r1 too, giving him
cost cr1/|N1|. Continuing this argument, it is easy to see
that all players in N1 will choose r1 regardless of what the
players outside N1 do.

Now we look at the players in N2. Since we proved that
all the players in N1 will choose r1 regardless of what all the
other players do, by the definition of the greedy algorithm
the best possible cost for players in N2 is cr2/|N2|. Again
we can employ the same argument: the last player in N2

will choose r2 given that the previous players did so. The
second to last player will choose r2 if the previous players
did so, since he knows the next player will do so, etc.

Syrgkanis [24] has recently shown the outcome of the greedy
algorithm for this problem is a high quality Nash equilib-
rium. Our result strengthens this by showing that the out-
come of the greedy algorithm is also a subgame perfect equi-
librium of the sequential game.

Observation 2 The subgame perfect equilibrium outcome
is independent of the order in which the players move. More-
over, the players don’t need to know the order in which the
rest of the players act to find their optimal move. Conse-
quently, the subgame perfect equilibrium is also a Nash equi-
librium of the game.

Notice that the greedy algorithm is still well-defined for
general decreasing cost functions: at each moment pick the
machine r with minimum γr(dr), where dr is the number
of uncovered players that can be allocated to that machine.
The outcome of the greedy algorithm still captures the back-
wards induction solution (which is unique in case of no ties).
In this more general case using the results in [24] we get that
the social cost of any Spe is at most the potential of the op-
timal outcome. Hence, for the more general case of cost
functions our result implies that the SPoA is at most the
best upper bound on the PoS that could be derived by the
Potential Method [2].

Theorem 3 For machine cost sharing games with arbitrary
decreasing cost functions the social welfare of any Spe is at
most the potential of the optimal solution.

4. UNRELATED MACHINE SCHEDULING
Consider a set M of m unrelated machines and n players

each holding a job j. Let tji be the processing time of job j
in machine i. We consider the classical optimization prob-
lem associated with this setting: assign jobs to machines so
as to minimize the makespan maxi∈M

∑
j;φ(j)=i tji. Lenstra,

Shmoys and Tardos [19] give a 2-approximation to this prob-
lem based on rounding the linear programming solution.

Here, we consider the game-theoretical version of this prob-
lem. Each player (job) has as action space the set of ma-
chines and as utility function the load of the machine he is
in. A traditional ordinal potential function argument [25]
shows that a pure Nash equilibrium always exists. However,
the makespan of a Nash equilibrium of this game can be ar-
bitrarily worse then the optimal makespan. The traditional
example is two jobs and two machines where t11 = t22 = 1



1 + ε 1 + ε 1 + ε1 2 3

Figure 1: Price of Anarchy O(m) when jobs (circles)
arrive from left to right.

and t12 = t21 = L � 1. One Nash equilibrium is job 1 in
machine 2 and job 2 in machine 1. It is easy to see this bad
example is easily avoidable when players act sequentially.
Here, we show an upper bound of O(m · 2n) for the Se-

quential Price of Anarchy and a lower bound of Ω(n). It
is an improvement that the bound depends only on (n,m)
and not on the numerical data of the problem. The example
with Ω(n) SPoA is a generalization of the example given in
Figure 1 when jobs (circles) arrive from left to right. The
only SPE is always to choose their right option, which ends
up with makespan 3 (and makespan n in general), instead of
1 + ε, which is the optimal. Now, we show an upper bound
on the SPoA:

Theorem 4 The SPoA for unrelated machines scheduling
is bounded by O(m · 2n).

Proof. Let
−→
L0 be a vector in RM

+ representing an initial

load on each of the machines, Spe(
−→
L0, k) be the makespan

of the SPE we get when players k, k+1, . . . , n play starting

from load
−→
L0 and let t∗j = mini∈M tji. We will do induction

on k from 1 to n using the induction hypothesis that:

∀−→L0 ∈ RM
+ : Spe(

−→
L0, k) ≤ ‖−→L0‖∞ + 2n−k

n∑
j=k

t∗j

Then the theorem follows by taking
−→
L0 =

−→
0 and k =

1 and noticing that
∑n

j=1 t
∗
j is smaller than m times the

optimal makespan.
Now we proceed to the induction. For k = n, this is trivial,

because if just one player plays, he definitely will choose an
option of optimal makespan and we know that the machine
on which he has weight t∗n will lead to makespan at most

‖
−→
L0‖∞ + t∗n.
Suppose the hypothesis holds for k + 1, . . . , n. Player k

has the option of playing the machine in which he has t∗i
load. Let

−→
L1

∗ be the load on the machines after such a

move. Apparently, ‖
−→
L1

∗‖∞ ≤ t∗k + ‖
−→
L0‖∞. Moreover, by

the induction hypothesis, the makespan and thereby player

k’s cost in the end is at most ‖
−→
L1

∗‖∞ + 2n−k−1 ∑n
j=k+1 t

∗
j

which is at most t∗k + ‖
−→
L0‖∞ + 2n−k−1 ∑n

j=k+1 t
∗
j .

Now, if player k chooses some other machine i then it must

be that it yields for him a smaller or equal cost. Let
−→
L1 be

the load vector after k plays machine i. Player i’s cost on i
is at least Li

1. Hence,

Li
1 ≤ t∗k + ‖

−→
L0‖∞ + 2n−k−1

n∑
j=k+1

t∗j

and since Li′
1 = Li′

0 for any other machine i′, we get that

‖
−→
L1‖∞ ≤ ‖

−→
L0‖∞ + 2n−k−1 ∑n

j=k t
∗
j . Therefore:

Spe(
−→
L0, k) = Spe(

−→
L1, k + 1) ≤

≤ ‖
−→
L1‖∞ + 2n−k−1

n∑
j=k+1

t∗j ≤

≤ ‖
−→
L0‖∞ + 2n−k

n∑
j=k

t∗j

5. CONSENSUS AND CUT GAMES
In consensus and cut games we consider n players which

are vertices of a given weighted graph G = (V,E,w), where
w : E → R+. The action set of each player is binary:
Ai = {R,B}, which corresponds to choosing a color (red
and blue). Consensus Games are cost games where the
cost of player i is the sum of weights of edges from i to play-
ers of different color. Cut Games, are utility games where
the utility of player i is the sum of weights of edges from i
to players of a different color. We say that the weight vector
w is generic, if no weight wi is 0. Any weight vector w can
be made generic with a small random perturbation

In consensus games, the optimal outcome corresponds to
every player choosing the same color. In the simultaneous
version, it is easy to see that there are instances admitting
non-optimal Pure Nash Equilibria. However, we observe the
following for the sequential version:

Observation 5 The unique Spe in generic consensus games
is the optimal outcome.

We also study the closely related cut games. It is well
known that the simultaneous PoA for Pure Nash Equilibria
is 2. Here we show that for this class of games sequential
rationality does not improve the price of anarchy. We show
an upper bound of 4 on the SPoA (notice that the Spe
might not be a pure Nash equilibrium, so the bound of 2
doesn’t necessarily carry over), and a lower bound of 2.

Theorem 6 The SPoA of sequential cut games is at most
4.

Proof. Consider the players in the order they arrive. Let
Ek = {(i, k)|i < k} be the set of edges of player k to all
players that arrived previously.

Let A,B be the two partitions of the nodes in the Spe.
Consider the decision problem of player k. Wlog we can
assume that the weight of the edges of player k to predeces-
sor players in partition A is more than that to predecessor
players in partition B: w(Ek ∩ A) ≥ w(Ek ∩B) ≥ 1

2
w(Ek).

Hence, the utility of player k when choosing B is at least
1
2
w(Ek). Thus, uk(Spe) ≥ 1

2
w(Ek). Summing up over all k,

we get:

2Spe =
∑
k

uk ≥ 1

2

∑
k

w(Ek) =
1

2
w(E) ≥ 1

2
Opt

However, we conjecture that the true Sequential Price of
Anarchy for Cut Games is 2. Moreover, as the following
example shows it cannot be better than 2.



Example. In the following example we show that the
SPoA is at least 2. We consider the Sequential Cut Game
that is implied by the following symmetric (almost bipartite)
weighted graph:

W =


0 ε 1 1
ε 0 1 + ε 1 + ε
1 1 + ε 0 0
1 1 + ε 0 0


The unique Spe of the above game is for players 1, 3 and 4
to go to one partition and player 2 go to the other. This
leads to a social welfare of 2+3ε. The optimal is for players
1 and 2 to go to one partition leading to a social welfare of
4 + 2ε.

6. COMPLEXITY OF COMPUTING A SPE
In this section we address the complexity of computing

a Spe outcome in the games that we study and generally
in congestion games. Specifically we show PSPACE com-
pleteness for Unrelated Machine Scheduling and for Gen-
eral Congestion Games. Our proofs are based on reductions
from the Quantified Boolean Formula problem and the main
technical aspect of them is the idea of simulating NAND cir-
cuits with our games. Our Unrelated Machine Scheduling
reduction introduces a novel simulation of NAND circuits,
while the general congestion games proof uses techniques
from Skopalik et al. [23].

Theorem 7 Computing the outcome of an Spe in Unrelated
Machine Scheduling is PSPACE-complete.

Proof. We will prove completeness via a reduction from
the Quantified Boolean Formula (QBF) problem, which is
the most basic PSPACE-complete problem. QBF asks whether
a quantified form over a set of Boolean variables

∃x1∀x2 . . . Qnxnφ(x1, . . . , xn)

is true or false. It is easy to see that computing the outcome
of a SPE of a succinctly represented sequential zero-sum
game is PSPACE-complete. We can achieve this by creat-
ing a player for each variable in the QBF. Players play in
the order that their associated variables appear in the quan-
tification of the QBF instance. The strategy of each player
is a boolean assignment to his variable. Given a strategy
profile the utility function of each player associated with an
existential quantifier is 1 if at the end of the game the re-
sulting boolean assignment is a satisfying assignment for φ
and −1 otherwise. The utility of players associated with
universal quantifiers is the opposite. If one could compute
the SPE outcome then he could derive whether QBF is true
or false according to whether the resulting strategy profile
is a satisfying assignment.
Now the main problem of our reduction is simulating the

type of utility function described above through an Unre-
lated Machine Scheduling (UMS) game. In other words
given a boolean formula we have to create a UMS instance
such that the players controlling existentially quantified vari-
ables will have a higher cost when the outcome of the for-
mula corresponding to the current strategy profile is true
and lower otherwise. Respectively for the players control-
ling universally quantified variables. Wlog we can assume
that the QBF instance is given in prenex normal form and

that the boolean formula consists of only NAND operations
(Any QBF instance can be transformed to the above form
in polynomial time).

The main idea of the reduction is the following: We will
create a player for each boolean variable. Each such input
player will have two possible machines he can be assigned
to. His 0 and his 1 machine, each representing the corre-
sponding boolean assignment of the variable controlled by
the player. We will then create circuit players and machines
such that given the strategies chosen by the input players,
in the only dominant strategy remaining the circuit play-
ers simulate the circuit semantics. Hence, the last circuit
player will play his 0 strategy if the outcome of the boolean
circuit/formula is 0 and 1 otherwise. Also he will trigger
some feedback players to increase the load on the machines
of the players controlling existentially quantified variables
if the outcome is 0 and the load on the machines of those
controlling universally quantified variables otherwise.

We now move to the details of the reduction. We first
describe how to simulate the NAND semantics with UMS
game. In Figure 2 we depict the simulation of a NAND gate
whose output can become the input of k other NAND gates
at a next level of the circuit tree. Players X and Y are the
input players. We assume that the input players are fixed
(e.g. because they are the outcomes of a NAND gate of a
previous level or they are global input players). Moreover,
we assume that the leftmost machine of every player is his
1 strategy and the rightmost machine is his 0 strategy.

• If both players X,Y are playing 1, then player A will
also play 1. Now player B has cost 2α − ε on his 0
strategy and at most 2α − 2ε on his 1 strategy. Thus
B will also play 1. Now C has cost 2α − 2ε on his
1 strategy and 2α − 3ε + ε/2 on his 0. Thus C will
play his 0 strategy. The output players will thus have
ε cost on their 0 strategy and at least α−2ε on their 1
strategy. Thus all output players Oi will player their
0 strategies.

• If any of X,Y is player his 0 strategy then A has cost
at most α on his 0 strategy and cost 2α − ε on his 1.
Thus A will play 0. Now B has cost 0 on his 0 strategy
and ε on his 1. Thus A will play 0. C has cost 2α− 3ε
on his 1 strategy and 2α − 3ε + ε/2 on his 0. Thus
C will play 1. Now all the outcome players have cost
2α−3ε on their 0 strategies and cost at most 2α−4ε on
their 1 strategy. The latter is because by our overall
construction it is easy to see that at most 2 players
occupy any machine and also any player connected to
a machine of the next level has weight on that machine
at most α−2ε (we can achieve this by transforming the
circuit such that all players of level k gates are output
players of level k − 1 gates). Thus the output players
Oi will player their 1 strategy.

Thus interconnecting the above NAND gadgets such that
they simulate the circuit we can have a UMS game such
that, given what the input players have played, the unique
subgame perfect equilibrium simulates the circuit semantics.

Next we describe how the variable players are connected
to their NAND gates. Each input player has two strategies
0, 1 each of them having equal weight of 1. If a variable
player is connected to k NAND gates then we connect k
output players to the 1 machine of the variable player with
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Figure 2: Simulating a NAND gate with selfish unrelated machine scheduling.

a weight of 0. Those output players are then connected to
their NAND machines with a weight of 1/2 − ε. Thus the
NAND gates of the first level of the circuit have α = 1/2−ε.
Hence, the output players of the last level NAND gate of the
circuit will have weight on their 1 strategy of 1/2−(2k+1)ε.
Moreover, their 0 machine will have a cost of 1−(4k+1)ε+ε.
Now we move on to the gadget that gives the essential

feedback that creates the incentive for input players con-
trolling existential quantified variables to make the output
of the circuit 1. This is depicted in Figure 3. In this figure
we show how the output players of the last gate are con-
nected with the machines of the variable players. We may
assume that we have both the output of the circuit and its
negation, since we can produce both these values using an
extra level of gates. For each variable player that controls
an existentially quantified variable we have two output play-
ers that come from the negation of the circuit output. For
each variable player that controls a universally quantified
variable we have two output players that come from the cir-
cuit output. In the picture we depict the interconnection of
each such variable player with his corresponding two output
players. We assume that each Fi player is playing before
each corresponding Ii.

• If the output circuit (corr. its negation) is 1 then the
O1, O2 are triggered to play their 1 strategy because
their zero strategy has cost 1− (4k + 1)ε+ ε, where k
is the depth of the circuit, while if they play their one
strategy then each Ii will choose his 1 strategy later
on, leading to a cost of 1 − (4k + 1)ε) for them. This
will cause the input player to have cost 1+ε no matter
which strategy he plays.

• If the output is 0 then O1, O2 player their 0 strategy.
If the input player is on his 1 strategy then I1 will play
his 0 strategy and I2 will play his 1. If the input player
is on his 0 strategy then I0 will play his 0 strategy and
I1 his 1. In any case the input player incurs a cost of
1 no matter which strategy he plays.

Theorem 8 Computing a Spe in Congestion Games is
PSPACE-complete.

Proof Sketch. The proof follows similar lines as the previ-
ous theorem. The construction of Skopalik and Vocking [23]
allows us to simulate a forward NAND circuit with a conges-
tion game. Unlike the simultaneous case in the sequential
version we can create a feedback. Although the output play-
ers of the Skopalik et al. [23] construction occupy resources

with exponentially smaller congestion levels than the input
players, we just need to make them occupy an extra small
congestion shared resource with the input players. This way
we can again cause the X players to incur an ε extra cost
when the output of the circuit is 1 and the Y players when
the output is 0.

7. CONCLUSIONS AND OPEN PROBLEMS
In this work we showed how sequentiality can have a very

positive impact on the quality of outcomes for several natu-
ral and well-studied classes of games. The main open prob-
lem is to extend our analysis for even bigger classes of games.
It is easy to see that for general potential games one can
create pathological examples that will make the sequential
version behave arbitrarily worse. However, we believe the
merits of sequentiality will carry over to natural subclasses
of potential games. We consider as a very interesting direc-
tion the case of general cost sharing games, where we believe
that the sequential price of anarchy is still exponentially bet-
ter than it’s simultaneous counterpart.

Another interesting direction is to show classes of games
where the subgame perfect equilibrium of the sequential ver-
sion is a pure Nash equilibrium of the simultaneous version.
In those classes of games our technique would be a very nat-
ural equilibrium refinement solution. We showed that such
a property holds for machine cost-sharing games. In general
it is easy to see that if the subgame perfect equilibrium out-
come doesn’t depend on the ordering of the players’ arrival
then it is always a Nash Equilibrium. It is interesting to see
whether other properties lead to such a conclusion.
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[18] E. Koutsoupias and C. Papadimitriou. Worst-case
equilibria. In Symposium on Theoretical Aspects of
Computer Science, pages 404–413, 1999.

[19] J. K. Lenstra, D. B. Shmoys, and E. Tardos.
Approximation algorithms for scheduling unrelated
parallel machines. Math. Program., 46:259–271,
February 1990.

[20] A. Montanari and A. Saberi. Convergence to
equilibrium in local interaction games. SIGecom
Exch., 8:11:1–11:4, July 2009.

[21] R. Paes Leme, V. Syrgkanis, and Éva Tardos.
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