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We provide a unifying theory for the analysis and design of efficient simple

mechanisms for allocating resources to strategic players, with guaranteed good

properties even when players participate in many mechanisms simultaneously

or sequentially and even when they use learning algorithms to identify how to

play and have incomplete information about the parameters of the game. These

properties are essential in large scale markets, such as electronic marketplaces,

where mechanisms rarely run in isolation and the environment is too complex

to assume that the market will always converge to the classic economic equilib-

rium or that the participants will have full knowledge of the competition.

We propose the notion of a smooth mechanism, and show that smooth mech-

anisms possess all the aforementioned desiderata in large scale markets. We fur-

ther give guarantees for smooth mechanisms even when players have budget

constraints on their payments. We provide several examples of smooth mech-

anisms and show that many simple mechanisms used in practice are smooth

(such as formats of position auctions, uniform price auctions, proportional

bandwidth allocation mechanisms, greedy combinatorial auctions). We give

algorithmic characterizations of which resource allocation algorithms lead to

smooth mechanisms when accompanied by appropriate payment schemes and

show a strong connection with greedy algorithms on matroids. Last we show

how inefficiencies of mechanisms can be alleviated when the market grows

large in a canonical manner.
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1

INTRODUCTION

1.1 Allocating Resources to Self-Interested Users

How would you allocate resources in a system so as to maximize the total value

of the users? If you knew how much each user values each possible allocation

of resources then this would be purely an optimization problem (most probably

a hard one in each generic formulation) and thereby designing the appropriate

algorithm for the approximately efficient allocation of the resources, would be

the way to go. However, in most situations, the value that users have for each

allocation of resources is private information. Hence, the system also has the

task to elicit these parameters or some good approximation of them, taking into

account that users will behave strategically and selfishly. The standard approach

to solving the incentive problem is to introduce payments. Roughly, the combina-

tion of an allocation and a payment rule is what we will refer to as a mechanism.

Such mechanisms are ubiquitous in both economic systems and large-scale

computer systems. From the computer science perspective, they can capture

most modern electronic markets such as auction marketplaces (e.g. eBay), on-

line advertisement markets (e.g. Google AdWords etc.), crowdousrcing contests

(e.g. topCoder), where payments are implicit in the form of costly effort, band-

width allocation mechanisms (e.g. Kelly’s proportional allocation mechanism)

and computing resource sharing mechanisms in the “cloud”. From the purely

economic perspective they can capture settings such as spectrum auctions, gov-

ernment auctions for natural resources (e.g. timber auctions), art auctions (e.g.

Sotheby’s) and auctions for financial derivatives (e.g. government bonds).
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1.1.1 Desiderata in Large-Scale Distributed Markets

The large-scale nature of modern markets, especially those enabled by computer

systems, such as electronic marketplaces, introduces new challenges in the theo-

retical design and analysis of mechanisms. Though mechanism design is a field

with a long and distinguished history, starting from the early works of Vickrey,

Clarke and Groves [68, 16, 33] in the 60’s and 70’s, many of the challenges we

list below have not been at the forefront of the field.

Composability in the Presence of Multiple Mechanisms. In most markets

listed in the previous section, resources are owned by different entities and

many mechanisms are running at the same time, with players simultaneously or

sequentially participating in many of them (e.g. different sellers on eBay, differ-

ent online advertisement platforms). Even if the resources are owned by a single

entity (e.g. a single online advertisement platform),it is almost infeasible or im-

practical to run a global centralized mechanism for all the resources and a more

decentralized market structure, where small groups of resources are sold via a

separate mechanism, is preferred (e.g. the advertisement slots in each search

query are sold separately via the means of an auction, called the Generalized

Second Price auction).

In these situations, it is crucial that the market as a whole performs reason-

ably well, i.e. the global allocation of resources is approximately efficient. Thus

the local mechanisms used must satisfy some composability property: local prop-

erties that imply local efficiency guarantees for each mechanism in isolation, also directly

imply global efficiency guarantees.
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Robustness to Learning Behavior and Incomplete Information. In most

large-scale markets, the decision problem that each participant is facing is far

too complex to assume with certainty that the market will arrive at the classic

economic equilibrium, i.e. a state where no participant wants to unilaterally

deviate, aka a Nash equilibrium. Rather we need more robust guarantees even

if players use learning algorithms to identify how to play in the game. Such

learning behavior will not necessarily lead to a Nash equilibrium and could po-

tentially also lead to correlations in the behavior of participants. Any efficiency

guarantee of a mechanism should extend to generic enough models of learning

behavior.

Moreover, we cannot expect the participants to know all the parameters of

the game (e.g. valuations of opponents). Therefore, the mechanism should also

be robust with respect to informational assumptions and should be approxi-

mately efficient even when players have only partial information (e.g. distribu-

tional beliefs) about these parameters.

Simple Rules with Fast Implementation. The Internet environment allows

for running millions of mechanisms, which necessitates the use of very simple

and intuitive allocation and payment schemes with a fast implementation. As

an example, approximately seven thousand search queries happen on Google’s

search engine every second and each of these search queries triggers an auction

among advertisers for the allocation of the special advertisement slots that will

appear together with the “organic” search results. Hence, the auction rule that

is used, should be able to be computed in a matter of milliseconds.
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1.1.2 Thesis Goal: Robust Efficiency Guarantees in Markets

Composed of Simple Mechanisms

The goal of this thesis is to provide a theoretical framework for the design and

analysis of simple mechanisms for allocating resources to self-interested and

strategic users, with guaranteed good properties even when the users partici-

pate in multiple different mechanisms simultaneously or sequentially and even

when players use learning algorithms and have incomplete information of the

market. One of the key questions we will address is:

What properties of local mechanisms guarantee global efficiency in a mar-

ket composed of such mechanisms and even under learning behavior and in-

complete information?

Traditional mechanism design considered mechanisms only in isolation, an

assumption not so realistic in many large-scale markets, where players can

cover their needs from multiple different mechanisms. As perfectly summa-

rized by two leading economists of the field in the concluding remarks of their

seminal paper on competitive bidding:

“Most analyses of competitive bidding situations are based on the assump-

tion that each auction can be treated in isolation. This assumption is some-

times unreasonable.”, Milgrom and Weber, 1982

Moreover, mechanism design has mostly focused on truthful mechanisms,

where players are incentivized to truthfully reveal all their private parameters

5



to the mechanism. In an environment with several auctions running simultane-

ously or sequentially, truthfulness of each individual auction loses its appeal, as

the global mechanism is no longer truthful, even if each individual part is. The

literature’s focus on truthful mechanisms is based on the revelation principle,

showing that if there are better non-truthful solutions, the mechanism designer

can run this alternate solution on the players’ behalf. However, the revelation

principle is limited to mechanisms running in isolation: with multiple mecha-

nisms run by different parties, there is no global coordinator to implement the

solution. Requiring global coordination between mechanisms is not viable and

could lead to complicated coordination problems, such as agreeing on ways to

divide the global revenue.

From the analysis perspective, a handful of papers in the economic literature

have analyzed properties of strategic outcomes of games arising from selling a

set of items via auctions simultaneously or sequentially [55, 22, 53, 9, 30, 6, 58]

(a special case of our general setup). However, most of the economics litera-

ture has made several simplifying assumptions, such as symmetric user prop-

erties or small number of users or complete information of the parameters of

the market. The main hurdle in extending the analysis to more realistic settings

is analytically solving for the equilibrium. In the general setup that we study,

analytically solving for the equilibrium is an impossible task and even more

importantly it is not true that the equilibrium of the market is always unique.

Instead we will follow the price of anarchy analysis from the computer science lit-

erature [15, 57, 46, 8, 36] that attempts to analyze the efficiency without solving

for the equilibrium, as we will describe in subsequent sections.
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1.1.3 A Concrete Example

Simultaneous Item Auctions. Consider an example with two sellers A,B,

each having one item for sale. For simplicity, the market has two participants

α, β and each participant wants only one item (i.e. is unit-demand). The items

that are for sale are not completely identical and the participants exhibit some

slight preference: player α has value 2 for item A, value 1 for item B and 2 for

the bundle of the two items (since he will only use one of them). Player β prefers

item B, having value 2 for item B, value 1 for item A and 2 for the bundle. Ob-

viously the optimal allocation in this market is for each player to win his most

preferred item, yielding a total value of 4.

What would happen in this market if each seller was using a second-price

auction to sell his item (i.e. the highest bidder wins and pays the second highest

bid)? The two participants are playing a game where their strategy is to submit

a bid on each of the two items. For simplicity, assume that a Nash equilibrium

of the game will arise, i.e. a profile of bids such that no player can gain by

deviating. Assuming that the utility that the player derives from the interaction

is his value for his allocation minus his total payment, then it is easy to see that

the following is one equilibrium: player α bids 1 on item B and 0 on item A and

player β bids 1 on item A and 0 on item B. Both players derive a utility of 1 and

it is easy to see that no unilateral deviation of a player can lead to a better utility.

Thus at the equilibrium, the allocation is suboptimal and the total value is only

half of the value of the optimal allocation.

One of the main take-away messages of this example is that the nice proper-

ties of a single-item second-price auction in isolation, break the moment there

are several mechanisms running simultaneously: in a single-item second price

7



auction it is a dominant strategy for the player to bid his true value for the item

irrespective of what the opponents are doing and under such truthful behavior

the item will go the highest value player. In the simultaneous auction setting,

not only players don’t have dominant strategies, but even the concept of truth-

fulness does not make sense, as the players can no longer express their whole

valuation function through their bids. Another observation, in the above exam-

ple is that if a first-price auction (i.e. winner pays his bid) was used instead of a

second price, then every Nash equilibrium with deterministic bids would have

resulted in the optimal allocation. Thus mechanisms that seem inferior when

studied in isolation might perform better in an environment where multiple

mechanisms occur at the same time.

1.1.4 Approach and Main Conclusions

We will approach the problem using techniques from the computer science lit-

erature and more specifically, the work on the price of anarchy, initiated by the

seminal papers of [42, 62]. The price of anarchy literature attempts to quan-

tify the efficiency of all possible strategic outcomes without analytically solving

for the equilibrium, but rather simply from the fact that if an outcome is an

equilibrium then every deviation of a user must lead to lower utility, a.k.a. the

best-response property. Our work develops a unifying theory of how to analyze

mechanisms via such best-response arguments. Special cases of our theory in-

cludes some earlier work on the price of anarchy in specific auction settings

[15, 57, 46, 8, 36]. Our work will unify and heavily extend the results in these

papers in a single theory on the price of anarchy of mechanisms. Apart from the

applications we present in the thesis, our theory has been used subsequent to
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our work, in quantifying the efficiency of mechanisms at equilibrium [17, 14, 5].

More formally, we define the notion of a (λ, µ)-smooth mechanism and show

that smooth mechanisms are approximately efficient and possess all the desired

properties of composability and robustness under learning behavior and in-

complete information. The definition of a smooth mechanism is based on the

existence of a “well-behaved” best response action for each player. Intuitively,

the mechanism must admit for each player an “optimal” action, such that no

matter what the other players are doing, this action guarantees her a good frac-

tion of her optimal allocation and at a price that is comparable to what is cur-

rently being paid for that allocation. Our notion of smoothness is focused on

mechanisms where players have quasilinear utilities and is closely related to

the notion of smooth games introduced by Roughgarden [59].

Our main result is to show that smooth mechanisms compose well and are

robust to incomplete information and learning behavior:

A market composed of smooth mechanisms running simultaneously is

approximately as efficient as each individual mechanism would have been if

run in isolation, when players have complement-free valuations across mecha-

nisms. Efficiency is achieved even in learning outcomes, as well as in Bayesian

settings with uncertainty about participants.

We present several other robustness properties of smooth mechanisms, such as

composability when mechanisms are run sequentially rather than simultane-

ously, efficiency properties when players have budget constraints on the pay-

ments they can make and how the inefficiencies of some smooth mechanisms

can be alleviated if the market becomes large in a canonical manner.
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We further show that many well-studied and used mechanisms are smooth,

such as several forms of single-item auctions such as first price and all-pay, some

formats of ad-auctions, Kelly’s [41, 40] proportional bandwidth allocation mech-

anism, uniform price auctions, as well as a number of other mechanisms. In that

respect, we also present algorithmic characterizations of what algorithms for

allocating resources, lead to smooth mechanisms when accompanied with ap-

propriate payment schemes and show a strong connection between smoothness

and greedy algorithms under well-behaved resource allocation constraints.

1.2 Our Contributions

1.2.1 Robust Efficiency Guarantees for Mechanisms

We define the notion of a (λ, µ)-smooth mechanism and show that any such

mechanism achieves at least a λ
max(1,µ)

fraction of the maximum possible social

welfare at every Nash equilibrium. Moreover, this guarantee extends directly to

any coarse correlated equilibrium, which is a superset of Nash equilibria.

No-Regret Learning (Sections 2.4 and 3.1). As is known coarse correlated

equilibria have a strong connection to no-regret learning in games. Suppose that

the mechanism is played repeatedly with the parameters of every player re-

maining fixed and the players use some update rule to learn how to play the

game. All we assume is that the learning rule satisfies the property that in the

long run the player doesn’t regret having played a fixed strategy in all periods.

Then it is known that the empirical distribution of players’ actions of any such

10



no-regret sequence of play will converge to a coarse correlated equilibrium of

the static game [12]. Thus the efficiency guarantee of a smooth mechanism di-

rectly extends to the average welfare of any such no-regret sequence.

Bayesian Incomplete Information (Section 3.2). In addition, we show that

this guarantee extends directly to Bayesian settings of incomplete information,

where each player’s private parameters are drawn independently from some

commonly known distribution. In that setting we define a notion of a Bayesian

coarse correlated equilibrium and we show that the expected welfare of any such

equilibrium is at least λ
max{1,µ} of the expected optimal welfare (in expectation

over player parameters). Bayesian coarse correlated equilibria are a superset

of Bayes-Nash equilibria [34] and similar to coarse correlated equilibria have a

strong connection with no-regret dynamics as we explain below.

No-Regret Learning with Stochastic Parameters (Section 3.3). We consider

a situation where the game is played repeatedly and at each iteration each

player’s private parameters are re-sampled independently from some distri-

bution (unlike in the previous repeated game version, where they were fixed).

Equivalently, one can view each player as a population, where each “atom”

in the population has some fixed parameter and at each time step one player

from each population is picked to play in the mechanism. We show that if each

player achieves the no-regret property for each possible parameter instantiation

(or equivalently each “atom” in the population achieves the no-regret property),

then the limit empirical distribution of play converges almost surely to the set

of Bayes coarse correlated equilibria that we defined. Therefore, the efficiency

guarantee directly extends to the average welfare of any no-regret sequence in
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the above Bayesian repeated game setting.

Bandit Learning. The no-regret learning guarantees have the extra robustness

properties that for a player to achieve the no-regret property he doesn’t need to

be aware of any parameters of the game, neither the distributions from which

the parameters are re-drawn. There are update rules that the player can invoke

(e.g. multiplicative weight updates [3]), that only require for the player to be

able to calculate his utility from the action he took at each time step. Thus it

suffices to know just his value for the allocation he received and his payment.

Efficiency with the No-overbidding Refinement (Chapter 6). For some mech-

anisms, such as the second price auction, good performance requires that par-

ticipants do not bid above their value. It is easy to see that even in a single-

item second price auction, there exist Nash equilibria where players overbid

and whose welfare is arbitrarily worse than the optimal. However, if we con-

sider only the subset of equilibria where players don’t bid above their value for

the item, then every Nash equilibrium is efficient.

For such “second-price type” mechanisms, we identify the notion of a

weakly smooth mechanism. Weakly smooth mechanisms achieve high wel-

fare at any equilibrium that satisfies a generalization of the non-overbidding

assumption that we described above for the case of a single-item second price

auction. Moreover, this guarantee is equally robust to the guarantees of smooth

mechanisms, in the sense that it extends to learning outcomes and Bayesian in-

complete information.
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1.2.2 Composability of Mechanisms

Simultaneous Composability of Smooth Mechanisms (Section 4.2). We

show that smooth mechanisms compose well in parallel: if we run any num-

ber of (λ, µ)-smooth mechanisms simultaneously and players valuations over

outcomes of different mechanisms satisfy a complement-free condition that we

explain in the next paragraph, then the global market can also be viewed as

a (λ, µ)-smooth mechanism, and hence achieves a λ/max(1, µ) fraction of the

maximum social welfare in all Bayesian coarse correlated equilibria and for any

independent distributions of player parameters.

Complement-Free Valuations Across Mechanisms (Section 4.3). For our si-

multaneous composability results, we need to assume that user’s valuations

have no complements across the different mechanisms. At a high-level all we

need to assume for the composability property is that the marginal valuation of

a player for an allocation from a specific mechanism can only decrease if more

mechanisms come into the market and give him some non-empty allocation.

In more detail, we develop a hierarchy of valuations on outcomes that have

no complements across mechanisms. Existing valuation hierarchies consider

only valuations on sets of items. We identify analogs of complement-free valua-

tions across mechanisms, without making any assumption about the valuations

of players’ for outcomes within a mechanism.

We define natural generalizations of submodular, fractionally subadditive,

XOS and subadditive valuations over outcomes of different mechanisms. In

the context of valuations on sets of items, fractionally subadditive is a superset
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of submodular valuations, and is known to be equivalent to the class of XOS

valuations. We show an equivalent connection among the generalized versions

of these functions extending the results of Feige [23] and Lehmann et al. [45].

If smoothness of each local mechanism holds only for some restricted class

of local valuations, then we will need to make roughly the same assumption for

the component-wise marginals of the valuation of a player across mechanisms.

For instance, if the allocation space of a mechanism is partially ordered and

the smoothness property holds only when the valuations of players are mono-

tone with respect to the partial order, then we will also need to assume that if

we fix the allocation from other mechanisms, the valuation of the player across

mechanisms is also monotone with respect to the allocation from the specific

mechanism. Similarly, if the allocation space forms a lattice and local smooth-

ness holds only for submodular valuations over the lattice, then we will need to

assume that the valuation across mechanisms is submodular with respect to the

product lattice of allocations of different mechanisms.

Approximate Composability with Restricted Complements (Section 4.5).

We also show that in the presence of complementary valuations, the smoothness

of the global market degrades smoothly with the “size” of the complements. For

the case of set functions, a natural class of complementary relations are those de-

fined via the means of a positively weighted hypergraph, where the value for a

set of items is the total weight of hyperedges contained in the set. Then the size

of the complements can be defined as the cardinality of the largest hyperedge.

Based on this intuition we define a novel measure of complementarity of a

set function and more generally of a valuation function over outcomes of mech-
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anisms and we show an approximate composability property that degrades

smoothly with this measure.

Such restricted complement valuations find good application in spectrum

auctions where bands in neighboring geographic region exhibit complementary

relations (e.g. have extra value when acquired in conjunction). They also find

applications in online advertisement auctions where slots in different parts of a

webpage can have a complementary effect, as they create an “impression effect”

when acquired in conjunction.

Sequential Composability of Smooth Mechanisms (Chapter 5). We also

show that smooth mechanisms compose well sequentially, though for a more

restrictive assumption on valuations : if we run any number of (λ, µ)-smooth

mechanisms sequentially and a player’s value is the maximum valued alloca-

tion she got among all mechanisms then the global mechanism achieves welfare

at least λ/(µ+1) of the optimal social welfare at every Bayes correlated equilib-

rium (not coarse correlated equilibrium).

To show this theorem we define a more relaxed smoothness condition, de-

noted as smoothness via swap deviations and show that the global mechanism

satisfies this relaxed (λ, µ+1)-smoothness condition. We then show that smooth

mechanisms via swap deviations guarantee good efficiency at every correlated

equilibrium, hence no-swap regret dynamics (i.e. dynamics where in the long-

run players don’t regret swapping some action with some other) and even un-

der incomplete information. Our efficiency proof for the incomplete informa-

tion setting uses a bluffing technique to handle the fact that in a sequential

mechanism, past actions might reveal information about the private value of
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a player.

1.2.3 Budget Constraints

The results discussed so far, assume that a participants utility from the mecha-

nism is equal to his value for his allocation minus his payment, i.e. utilities are

quasi-linear with respect to money.

The most common non-quasi-linear valuation is when players have budget

constraints on their payments. We extend our results to settings where partic-

ipants have budget constraints. With budget constraints, maximizing welfare

is not an achievable goal, as we cannot expect a low budget participant to be

effective at maximizing her contribution to welfare. We define a new bench-

mark in this setting, which we call the optimal “effective welfare”; capping the

contribution of each player to the welfare by their budget.

We show that, subject to a minor strengthening of the smoothness definition,

dubbed conservative smoothness (which all the known and presented smooth

mechanisms satisfy), all our results about efficiency for the case of simultane-

ous mechanisms carry over to bounds for this benchmark when players have

budget constraints. For more details see Chapter 7.
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1.2.4 Algorithmic Characterizations of Approximately Efficient

Mechanisms

The definition of a smooth mechanism is a semantic one, based on an existential

property of a best-response action. It does not directly give algorithmic guide-

lines about what mechanisms are smooth. An analogue is truthfulness, which is

also a semantic property; it is useful to have descriptive algorithmic conditions

for truthfulness, such as optimal algorithms (as in the VCG mechanism). Can

we give analogous, useful characterizations of algorithmic conditions that guarantee

smoothness?

A common feature in many of the mechanisms that we show are smooth is

the greediness of the allocation rule. Indeed, an intuition that arises from the line

of work on approximately efficient mechanisms is that greedy algorithms lend

themselves well to mechanism design, in the sense that they generate auctions

with good performance at equilibrium. We formalize this intuition and provide

algorithmic characterizations of smoothness.

Specifically, we show that if a greedy allocation rule is used to allocate re-

sources subject to a matroid constraint, and players have submodular1 pref-

erences over the resources, then the resulting mechanism is smooth and will

achieve a constant fraction of the optimal welfare at every Bayes coarse corre-

lated equilibrium. We also provide similar characterizations for greedy and op-

timal algorithms when the feasibility constraints are intersections of matroids.

For more details see Chapter 8.

1Our results actually hold for the more general class of fractionally subadditive preferences.
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1.2.5 Efficiency in Large Market Limits

We address the question of whether the efficiency guarantees of a mechanism

improve as the game grows large in a canonical way. The intuition is that if

a player has a negligible effect in the outcome of the market then any strate-

gic manipulation that he might employ, will not ruin social welfare by much.

Hence, it is reasonable to expect that as the market grows large the inefficiency

of a mechanism will improve.

We propose a smoothness in the limit framework and show a very general

full efficiency in the limit result for the case of simultaneous uniform price auc-

tions, with multiple goods and arbitrary monotone combinatorial valuations,

assuming that the supply of each good grows as the number of players grows

and that each player fails to arrive in the market with some probability δ. For

more details see Chapter 9.

1.2.6 Applications

We show that many well-known auctions are smooth and can be analyzed in our

framework. We list a few representative examples below, and note that our com-

position result applies when running any set of such auctions simultaneously or

sequentially.

Single Item Auctions (Chapter 10). We show that the first price single item

auction is
(
1− 1

e
, 1
)
-smooth, the all-pay auction is

(
1
2
, 1
)
-smooth and the sec-

ond price auction is weakly and (1, 0, 1)-smooth. We also give a smoothness
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proof for the hybrid auction in which the winner pays a convex combination of

her own bid and the second highest bid. Our framework implies that running

m simultaneous first price auctions and bidders have fractionally subadditive

valuations and budget constraints achieves efficiency at least 1 − 1
e

of the opti-

mal effective welfare. All-pay auctions achieve a guarantee of 1
2
. Second price

auctions achieve a guarantee of 1
2

under the no-overbidding assumption. For

sequential auctions with unit-demand bidders and no budget constraints the

first price, all-pay and second price auctions give guarantees of 1
2
(1 − 1

e
), 1

4
and

1
2

respectively.

Position Auctions (Chapter 11). We analyze position auctions for more gen-

eral valuation spaces than what has been typically considered [21, 13]. We use

the model of Abrams et al [2], where each player i has an arbitrary valuation vij

for appearing at position j, that is monotone in the position. Most of the litera-

ture in position auctions has considered valuations of the form vij = ajγivi, i.e.

players have only value per click vi and their click-through-rate is dependent

in a separable way on their quality and on the position. The more general class

of valuations can capture settings where players have value both for click and

for the impression itself, and settings where the click-through-rates are not sep-

arable. We show that the following very simple first price analog of the auction

of [2] is (1
2
, 1)-smooth: solicit bids from the players, allocate positions in order

of bids and charge each player his bid. The implied guarantee of 1
2

holds for

simultaneous composition when players have monotone fractionally subaddi-

tive valuations and budget constraints. Such valuations capture, for instance,

settings where bidders have value vi only for the first k clicks, or settings where

the marginal value per-click of a player decreases with the number of clicks he
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gets. In addition, a bound of 1
4

is implied for the sequential composition when

bidders value is the maximum value among all impressions he got. In contrast,

[2] consider the second price analog of this auction, and show that it always has

an efficient Nash equilibrium, but do not consider the price of anarchy. We show

that the second price version is weakly (1
2
, 0, 1)-smooth, implying an efficiency

guarantee of 1
4

for simultaneous and sequential composition of such auctions

under the no-overbidding assumption. We also consider other variations of the

well-studied GFP and GSP mechanisms for the case when players have only

values per click.

Greedy Direct Auctions (Chapter 12). Lucier and Borodin [46] considers com-

binatorial auctions, whose allocation function is based on a restricted class of

greedy c-approximation algorithms. When a first price payment is used, they

show that such a greedy auction has a c + O(log(c)) efficiency guarantee. We

improve this bound, by showing that this mechanism is (1 − e−1/c, c)-smooth

implying an efficiency guarantee of at least 1
c+0.58

. This bound extends to the

simultaneous composition of such mechanisms when bidders have fractionally

subadditive valuations across auctions and budget constraints. For example,

when each auctions sells only a small number of items, greedy algorithms can

do quite well (giving a
√
k-approximation for arbitrary valuations, if each auc-

tion sells at most k items). Observe, that fractionally subadditive valuations

across auctions allow for complements within the items of a single greedy auc-

tion, hence is more general than just assuming that players have fractionally

subadditive valuations over the whole universe of items. We also show that the

above analysis is a special case of a more general property of direct auctions, i.e.

auctions where players can report their whole valuation over allocations.
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Bandwidth Allocation Mechanisms (Chapter 13). We consider the single-link

bandwidth sharing version of the setting studied by Johari and Tsitsiklis [38]

where a set of players want to share a resource: an edge with bandwidth C.

Each player has a concave valuation vi(xi) for getting xi units of bandwidth.

The mechanism studied in [38] is the well-known Kelly Mechanism [41, 40]: so-

licit bids bi, allocate to each player bandwidth proportional to his bid xi =
bi∑
j bj

,

charge each player bi. We show that this mechanism is (2 −
√
3, 1)-smooth,

implying an efficiency guarantee of approximately 1/4 for Bayes coarse corre-

lated eqilibria. We note that [38] considered only Nash equilibria of the com-

plete information setting. Hence, we extend the analysis to incomplete infor-

mation. Moreover, the same efficiency guarantee extends to the case when

we run such mechanisms simultaneously and players have budget constraints

and monotone, lattice-submodular valuations on the lattice defined on Rm by

the coordinate-wise ordering. If the valuations are twice differentiable, being

monotone and lattice-submodular translates to: every partial derivative is non-

negative and every cross-derivative is non-positive.

Multi-Unit Auctions (Chapter 14). For the setting of multi-unit auctions (i.e.

all items are identical) where players have concave utilities in the amount of

units they get, we give two smooth mechanisms. Recently, Markakis et al. [50]

studied a greedy mechanism and showed a O(log(m)) approximation for the

case of mixed Bayes-Nash equilibria under a no-overbidding assumption. We

show that a first price version of their mechanism where each player is charged

his declared marginal bids for the units he acquired is
(
1
2

(
1− 1

e

)
, 1
)
-smooth,

while the uniform price version of [50] is weakly (1
2

(
1− 1

e

)
, 0, 1)-smooth. There-

fore our smooth analysis improves the O(log(m)) bound of [50] to a constant
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1
4

(
1− 1

e

)
and to 1

2

(
1− 1

e

)
when a first price payment rule is used. It also extends

the analysis to the case of simultaneous uniform price auctions, where players

have submodular valuations on the product lattice Nm of vectors of allocated

units of each good.

1.3 Comparison to Related Work

In this section we provide an overview of the main work that is related to the

general direction of the thesis. Since our thesis touches several subjects, more

specific related work is mentioned in each corresponding section, whenever ap-

propriate.

There has been a long line of research on quantifying inefficiency of equi-

libria starting from Koutsoupias and Papadimitriou [42] who introduced the

notion of the price of anarchy. More recently, this analysis technique has also

been used to quantify the inefficiency of auction games, including games of in-

complete information. A series of papers, Bikhchandani [9], Christodoulou et al

[15], Bhawalkar and Roughgarden [8], Hassidim et al [36], Paes Leme et al [56],

Syrgkanis and Tardos [66] studied the efficiency of equilibria of non-truthful

combinatorial auctions that are based on running separate item auctions (simul-

taneously or sequentially) for each item. Lucier and Borodin [46] studied Bayes-

Nash Equilibria of non-truthful auctions based on greedy allocation algorithms.

Caragiannis et al [13] studied the inefficiency of Bayes-Nash equilibria of the

generalized second price auction. All this literature can be thought of as spe-

cial cases of our framework and all the proofs can be understood as smoothness

proofs giving the same or even tighter results. A recent exception is the paper
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by Feldman et al. [25] giving a tighter bound for simultaneous item-auctions

with subadditive bidders, than what would follow from our framework.

Roughgarden [59] proposed a framework, which he calls smoothness in

games, and showed that a number of classical price of anarchy results (such as

routing and valid utility games) can be proved using this framework. Further,

he showed that such efficiency proofs carry over to efficiency of coarse corre-

lated equilibria (no-regret learning outcomes). Nadav and Roughgarden [54]

give the broadest solution concept for which smoothness proofs apply. Schopp-

mann and Roughgarden [61] extend the framework to games with continuous

strategy spaces, providing tighter results. However, these papers consider only

the full information setting and do not capture several of the auctions described

previously. Our definition of a smooth mechanism is closely related to the no-

tion of a smooth game. If utilities of the game were always non-negative (which

we only assume in expectation) then a (λ, µ)-smooth mechanism can be thought

of as a (λ, µ − 1)-smooth game. Moreover, our definition of a smooth mecha-

nism has several technical differences and imposes weaker conditions in some

respects, so as to allow us to prove our sequential and simultaneous compos-

ability results and also give tight efficiency results for many of the applications

described so far.

Recent papers offer extensions of the smoothness framework to incomplete

information games. Lucier and Paes Leme [47] introduced the concept of semi-

smoothness (inspired by their GSP analysis), and showed that efficiency results

shown via semi-smoothness extend to the incomplete information version of

the game, even if the types of the players are arbitrarily correlated. Semi-

smoothness is a much more restrictive property (for instance, not satisfied by the
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simultaneous item-bidding auctions) than just requiring that every complete in-

formation instance of the mechanism is smooth in the complete information set-

ting and applies mostly to mechanisms where players can express their whole

valuation profile through their actions. Moreover, semi-smoothness is a prop-

erty that does not compose: i.e. local semi-smoothness of each mechanism does

not imply global semi-smoothness.

Independent to our work in Syrgkanis [65], Roughgarden [60] also offered a

similar to ours direct extension theorem of efficiency guarantees from complete

to incomplete information. However, the results in [65] and [60] address effi-

ciency in general games and not mechanisms and for that reason they require a

stronger smoothness property (called universal smoothness in [65]), which re-

lates utilities of players with different types in a single inequality. Moreover,

none of the previous work addresses the issue of learning under incomplete

information and provides guarantees only for the static game of incomplete in-

formation and only for Bayes-Nash equilibria. Last, the approach used in these

papers cannot capture efficiency in sequential games, such as sequential item

auctions, which is achieved by our work.
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2

PRELIMINARIES

2.1 Notational Conventions

We will use bold letters x to denote a random variable in some probability space.

We will denote with ∆(Ω) the space of probability distributions over a finite set

Ω. Abusing notation we will use x to denote both the random variable and its

distribution, since the distinction will be clear from the context. Moreover, we

will write SUPP(x) for the support of the distribution of x. We will typically use

un-indexed letters x to denote vectors x = (x1, . . . , xn) in some product space.

We use R+ for non-negative real numbers.

2.2 Mechanism Design with Quasi-Linear Preferences

Most of this thesis will be considering the following generic setting: a set

of resources are to be allocated to a set of n players. The allocation vector

x = (x1, . . . , xn) has to lie in a set of feasible allocation vectors X that is a

subset of a product space of allocations X ⊆ X1 × . . . × Xn. We assume that

players can be asked to pay for their allocation and thereby a payment vector

p = (p1, . . . , pn) ∈ Rn
+ will also be decided. The pair o = (x, p) of an allocation

vector and a payment vector is referred to as an outcome.

Each player i, has a valuation function that maps an allocation to some non-

negative real number: vi : Xi → R+. We will denote with Vi the set of allowed

valuations for player i and with V = V1 × . . . × Vn the set of allowed valuation
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profiles. If a player is given allocation xi and is asked to pay pi, then the utility

that she derives is:

ui(xi, pi; vi) = vi(xi)− pi (2.1)

In other words, players have quasi-linear preferences with respect to money.

We will refer to such a mechanism design setting with quasi-linear prefer-

ences via the tuple (n,X ,V). Some important examples captured by this generic

formulation of a mechanism design setting are:

1. Combinatorial auctions: where Xi is the power set of items and X is the subset

of this product space such that no item is assigned to more than one player,

2. Combinatorial public projects: where Xi is the power set of potential projects

to be built and X is the subset of the product space such that every coor-

dinate is the same and each coordinate satisfies some constraint based on

which projects can be simultaneously built (i.e. a set of simultaneously fea-

sible projects is built and shared by the players),

3. Position auctions: where Xi is the set of positions and X is the subset of the

product space where no two coordinates are assigned the same position,

4. Bandwidth allocation mechanisms: where Xi is the portion of the bandwidth

assigned to player i and X is the subset such that the sum of the coordinates

is at most the bandwidth capacity.

Definition 2.2.1 (Mechanism). Given a mechanism design setting (n,X ,V), a mech-

anism M is a tuple (A, X, P ), where A = A1× . . .×An and Ai is a set of actions avail-

able to player i, X : A → ∆(X ) is an allocation function that maps each action profile

a = (a1, . . . , an) to a distribution over feasible allocation vectors x = (x1, . . . , xn) and
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P : A → ∆(Rn
+) is a payment function that maps each action profile to a distribution

over payment vectors p = (p1, . . . , pn).
1

We will denote with Xi and Pi the i-th coordinate of the allocation and payment

functions respectively and with UM
i : ∆(A) × Vi → R the expected utility of player i

from mechanism M:

UM
i (a; vi) = Ea,Xi(a),Pi(a) [vi (Xi(a))− Pi (a)] (2.2)

We will also denote the expected revenue of the mechanism as:

RM(a) =
∑
i∈[n]

Ea,Pi(a)[Pi(a)] (2.3)

Voluntary Participation Assumption. Throughout the thesis we will assume

that players can always drop out of the mechanism and get 0 utility. Thus we

will assume that the action space of each player always contains an exit action,

under which he pays nothing and he gets an empty allocation, for which he has

zero valuation.

2.3 Efficiency Measure

We will measure efficiency of an outcome o = (x, p) in terms of the social wel-

fare, which is the total value that the players have for the given allocation:

w(x; v) =
∑
i∈[n]

vi(xi)

1We could consider mechanisms where the distribution of allocation and payments is corre-
lated but, due to quasi-linearity of utilities and risk-neutrality, assuming independent payment
and allocation distributions is wihtout loss of generality.
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Equivalently, due to the quasi-linearity of utilities, the welfare can be viewed as

the total utility of the players and the payment of the auctioneer(s), i.e. the total

utility of all the participants.

Given a mechanism M we will denote with SW : A × V → R+, the social

welfare produced by the mechanism under some action profile:

SWM(a; v) =
∑
i∈[n]

EXi(a)[vi (Xi(a))] (2.4)

For any valuation profile v ∈ V we will denote with x∗(v) the optimal alloca-

tion, i.e. the allocation that maximizes w(x; v) over all feasible allocations x ∈ X

and we will denote with

OPT(v) = w(x∗(v); v) =
∑
i∈[n]

vi(x
∗
i (v)) (2.5)

2.4 Equilibrium Concepts and the Price of Anarchy

Our goal is to provide robust worst-case guarantees on the social welfare achiev-

able by a given mechanism at rational outcomes as compared to the optimal wel-

fare. However, the above statement requires a formal definition of what is a

rational outcome of a mechanism. In other words, it requires as to define a solu-

tion concept that predicts which outcomes will arise if players behave rationally,

trying to maximize their own utility. However, the problem that a player faces

when choosing his action in a mechanism is not a simple optimization problem,

since his allocation and payment depend on the actions of others. Therefore,

each mechanism defines a game among the n players and we have to analyze

non-cooperative equilibrium solution concepts of the resulting game. Our goal

would be to provide guarantees for as large sets of rational outcomes as possible
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and optimally for outcomes that can arise as the empirical distribution of play

of some dynamic process if the mechanism is played repeatedly and players

follow some decentralized learning process.

If the game is played only once and players have complete knowledge of all

the parameters of the game, such as the valuations of all their opponents, then

the standard solution concept is that of a (mixed) Nash equilibrium (NE).

Definition 2.4.1 (Nash Equilibrium - NE). A vector of randomized actions a ∈

∆(A1) × . . . × ∆(An), is a Nash equilibrium, if no player can benefit by deviating

unilaterally, i.e. for any i ∈ [n] and a′i ∈ Ai:

UM
i (a; vi) ≥ UM

i (a′i, a−i; vi) (2.6)

Price of Anarchy. To quantify the worst-case social welfare guarantee achiev-

able by a mechanism at equilibrium, we will use the well-established notion

of the Price of Anarchy (POA), which was introduced by Koutsoupias and Pa-

padimitriou [42]. In the context of mechanisms, the POA of Nash equilibria is

the largest ratio among all possible Nash equilibria of the resulting game, of the

optimal social welfare over the expected social welfare at equilibrium:

NE-POA = sup
a∈NE

OPT(v)

SWM(a; v)
(2.7)

In other words, if the NE-POA of a mechanism M is at most ρ, then the expected

social welfare at every Nash equilibrium of the mechanism is at least 1
ρ
·OPT(v).

Critiques of the Nash Equilibrium. There are two main critiques about the

concept of the Nash equilibrium, which can weaken any guarantees that apply

only to Nash equilibrium outcomes of a mechanism.
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First, it is not clear how would the players arrive at such an equilibrium, i.e. it is

not always true that there are natural dynamics such that if the game is played

repeatedly then the players will converge to a Nash equilibrium. On the con-

trary other solution concepts such as the Correlated Equilibrium (CE) (see Def-

inition 2.4.4) or the Coarse Correlated Equilibrium (see Definition 2.4.5) always

admit such dynamics and arguably natural ones (c.f. Hart and Mas-Colell [35]

for an extensive discussion on convergence of simple dynamics to CE and Blum

and Mansour [11] for convergence to CCE).

Second, the complete information assumption that players know the valua-

tion of all players is almost unreasonable in settings like electronic markets and

other complex large-scale marketplaces. The classic approach in such situations

is to assume that players have only distributional beliefs about the valuations

of their opponents and maximize their utility only in expectation over their

beliefs. This is formalized by the notion of a Bayesian Game, introduced by

Harsanyi [34] and the corresponding solution concept of a Bayes-Nash equilib-

rium (BAYES-NE) (see Definition 2.4.2).

In this thesis we will provide efficiency guarantees for solution concepts that

address each of these critiques, thereby offering some form of robustness of our

results. We will also provide guarantees for the solution concepts of a Bayes-

Correlated Equilibrium (BAYES-CE) (see Definition 3.3.2) and Bayes-Coarse

Correlated Equilibrium (BAYES-CCE) (see Definition 3.3.3) that address both

critiques simultaneously, i.e. they result from decentralized learning dynam-

ics in incomplete information environments. Figure 2.4 gives a quick overview

of the robustness of each solution concept. Guarantees that hold for the con-

cept of BAYES-CCE, which is equivalent to the limit empirical distribution of
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CCE

No-Regret

CE

No-Swap Regret

Figure 2.1: Comparison among solution concepts, with respect to robust-
ness of guarantees.

a no-regret sequence under incomplete information, and for any distributional

beliefs, is the most robust guarantee. Most of our guarantees would hold for

this concept or for the slightly less general one of Bayes-Correlated Equilib-

rium, which is equivalent to the limit empirical distribution of a no-swap re-

gret sequence under incomplete information. The formal definitions of all these

concepts are given in the sections that follow and in Section 3.3.

2.4.1 Incomplete Information and Bayes-Nash Equilibrium

I realized that a major problem in arms control negotiations is the fact that

each side is relatively well informed about its own position with respect to

various variables . . . but may be rather poorly informed about the other side’s

position in terms of such variables.

– Harsanyi, Nobel Lecture, 1994

In the incomplete information setting, the valuation vi of each player is

random and drawn independently from some commonly known distribution
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Fi ∈ ∆(Vi) and we will denote with F = F1 × . . . × Fn the product joint distri-

bution of valuations. In most generality valuations are drawn from some joint

correlated distribution, but since almost all of our results would require the in-

dependence assumption, we restrict our attention to the case of independent

valuation distributions.

Prior to making her decision on which action to play, each player learns

his own valuation vi and nothing else. This defines a Bayesian game, where

a player’s strategy is a mapping si : AVi
i from a valuation vi ∈ Vi to an action

ai ∈ Ai. We will denote with Σi = AVi
i the strategy space of each player and

with Σ = Σ1 × . . .× Σn.

The most commonly used solution concept in Bayesian games, is the fol-

lowing natural generalization of the Nash equilibrium, introduced by Harsanyi

[34]:

Definition 2.4.2 (Bayes-Nash Equilibrium - BAYES-NE). A vector of strategy pro-

files s = (s1, . . . , sn) ∈ Σ is a Bayes-Nash equilibrium if for any i ∈ [n], any vi ∈ Vi

and a′i ∈ Ai:

Ev−i|vi=vi

[
UM
i (s(v); vi)

]
≥ Ev−i|vi=vi

[
UM
i (a′i, s−i(v−i); vi)

]
(2.8)

Bayes-Nash Price of Anarchy. In the incomplete information setting, we will

measure efficiency of a mechanism in expectation over the valuation profile and

for any possible distributional beliefs Fi. Our benchmark will also be the ex-

pected ex-post optimal welfare over all possible valuation profiles, rather than

the ex-post optimal welfare. Specifically, we will analyze the Bayes-Nash Price of
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Anarchy, defined as:

BAYES-NE-POA = sup
F1,...,Fn

sup
s∈BAYES-NE

Ev [OPT(v)]

Ev [SWM(s(v);v)]
(2.9)

In other words, if the BAYES-NE-POA of a mechanism M is at most ρ, then the

expected social welfare at every Bayes-Nash equilibrium of the mechanism is at

least 1
ρ
· Ev [OPT(v)].

Similar to the Nash Equilibrium, the Bayes-Nash equilibrium has the draw-

back that, most of the times, no natural decentralized dynamics is guaranteed

to converge to it. In Section 3.3 we will analyze dynamic solution concepts that

converge to some notion of equilibrium of the static game that is a superset of

the Bayes-Nash equilibrium in the incomplete information setting. Hence, we

will address the second critique of Nash equilibria.

2.4.2 Repeated Games, Learning and Correlated Equilibria

“The theory of repeated games suggests that collusive behavior in a single

auction can be the result of noncooperative behavior in a repeated bidding

situation.”

– Milgrom and Weber, 1982, p. 1118

In many scenarios, such as online auctions, bandwidth sharing, or even clas-

sic economic settings such as mineral auctions [52], mechanisms are not run

only once, but rather are run repeatedly, with players participating in many in-

stances of the same game. In such a repeated setting it is reasonable to analyze

the quality of outcomes that arise from learning behavior of the participants.
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Moreover, as we shall explain below, in many cases the empirical distribution

of actions of such learning behavior will inevitably converge to some static equi-

librium concept of the stage game, thereby also offering a dynamic justification

to it and giving one explanation of how players could have arrived at such an

equilibrium.

One natural form of learning in games is that of no-regret learning, which

is a descriptive rather than prescriptive class of learning rules. It simply states

that no matter how the players learn how to play in the game, to the least they

should, in the long run, have no regret against playing any fixed action all the

time.

In this section we will focus on a learning scenario, where the valuations of

the players are drawn at the beginning of time and fixed during the learning

process. This would correspond, in some sense, to learning under complete in-

formation, since as we will discuss, in the long run these dynamics will converge

to an equilibrium of the static complete information game. In Section 3.3, we will

address settings where the valuations of the players that play at each iteration

of the learning process are varying and in that setting, learning will correspond

to some form of equilibrium of the static incomplete information game.

Formally, we analyze the repeated game among a set of n players with val-

uation profile v ∈ V , where at each iteration t, each player i picks an action

ati ∈ Ai and plays mechanism M, incurring utility: UM
i (at; vi). We will assume

that players decide their action ati, using some no-external or no-swap regret al-

gorithm. An algorithm achieves no-external regret, if in the limit as time goes

to infinity, a player does not regret switching to playing a fixed action a∗i . It

achieves no-swap regret if the player does have regret against any swap map-

35



ping: i.e. swap ai with a′i in the history of play.

Definition 2.4.3 (Vanishing External and Swap Regret). A sequence of action pro-

files a1, . . . , aT , . . . has vanishing external regret for player i if for any a∗i ∈ Ai:

lim inf
T→∞

1

T

T∑
t=1

(
UM
i (at; vi)− UM

i (a∗i , a
t
−i; vi)

)
≥ 0 (2.10)

and it has vanishing swap regret if for any a∗i : Ai → Ai:

lim inf
T→∞

1

T

T∑
t=1

(
UM
i (at; vi)− UM

i (a∗i (a
t
i), a

t
−i; vi)

)
≥ 0 (2.11)

Agnostic learning. It is worth pointing that for a player to achieve vanishing

external or swap regret, he does not need to know the valuations of his oppo-

nents at the beginning of the learning process. In fact the only thing we need

to assume is that after each period t, he learns his utility from the action that he

played (see Auer et al. [3] for an example of an algorithm that each player can

use to achieve vanishing regret under such limited feedback).

Price of Total Anarchy. In the repeated game setting we are interested in com-

paring the average efficiency of a mechanism at any sequence of play that has

vanishing external or swap regret for all players, as compared to the optimal

welfare. This is captured by the price of total anarchy introduced by Blum et

al.[12]:

sup
(at) has vanishing external regret

lim sup
T→∞

OPT(v)
1
T

∑T
t=1 SW

M(at; v)
(2.12)

and correspondingly for vanishing swap regret sequences.

Optimal Convergence Times and Non-zero Regret. Although we will present

our results for the limit empirical distribution as T goes to infinity, where the
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player actually achieves no-regret, most our results will also have an approxi-

mate analogue for any finite time. In other words, suppose that for some time

T , the learning algorithm has achieved average external regret of ϵ(T ):

1

T

T∑
t=1

(
UM
i (at; vi)− UM

i (a∗i , a
t
−i; vi)

)
≥ −ϵ(T ) (2.13)

Then if the price of total anarchy is upper bounded by ρ, then in all of our results

we will also be able to claim a lower bound on the average welfare of the form:

1

T

T∑
t=1

SWM(at; v) ≥ 1

ρ
OPT(v)− n · ϵ(T ) (2.14)

If at each time step the player can query his utility for every possible action

ai ∈ Ai, then there exist algorithms (e.g. multiplicative weight updates) that

can achieve average external regret of
√

log(|Ai|)
T

after T time steps. If the player

can only query the utility from the action that he actually chose, then there are

algorithms that can guarantee regret of
√

|Ai| log(|Ai|)
T

[3]. Thus convergence is

sufficiently fast if the action space of the mechanism has reasonable size.

Corresponding static concepts. As is well known (c.f. Blum and Mansour

[11], Hart and Mas-Colell [35]), if a sequence of play has vanishing external

regret then the empirical distribution of actions converges to the set of coarse

correlated equilibria of the static complete information game. While if it satisfies

vanishing swap regret then it converges to the set of correlated equilibria.

A correlated equilibrium is a correlated distribution over action profiles,

such that no player has incentive to switch to some action a′i, conditional on

playing some other action ai. The correlated equilibrium has the following in-

terpretation: a “correlator” draws a random action profile a according to some

correlated probability distribution. Then he proposes to each player i to play
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action ai. The distribution is a correlated equilibrium if for each player it is in

their own interest to follow the proposed strategy, assuming everyone else also

follows that strategy.

In the context of learning, the history of play can be thought as the correlat-

ing device. Then there is an obvious connection between a correlated equilib-

rium and a no-swap regret sequence, since if the player did not regret not having

switched to some action a′i at each time step where previously he was playing

action ai, then this is equivalent to saying that the empirical distribution of the

sequence satisfies the correlated equilibrium conditions.

Definition 2.4.4 (Correlated Equilibrium - CE). A randomized action profile a ∈

∆(A1 × . . . × An) is a correlated equilibrium if for any player i ∈ [n] and for any

mappings a′i(ai):

UM
i (a; vi) ≥ UM

i (a′i(ai), a−i; vi) (2.15)

A coarse correlated equilibrium is a relaxation of the correlated equilibrium.

Specifically, it is a distribution over action profiles such that no player wants to

deviate to some other fixed action, unconditionally: i.e. the correlator draws a

random action profile a and proposes to each player i, action ai. Then the player

cannot gain by ignoring the correlator’s proposal and even before he learns the

correlators proposed action, deciding to play some other action a′i. Observe that

because the distribution of a is correlated, then the proposal contains informa-

tion about the distribution of actions of opponents, and thereby conditioning

on the proposal would be a stronger condition. For this reason the set of coarse

correlated equilibria is a superset of the set of correlated equilibria.

Similar to correlated equilibria, coarse correlated equilibria have a strong

connection to no regret sequences. If a sequence of play satisfies the no-external
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regret condition, then it is easy to see that the empirical distribution of action

profiles satisfies exactly the conditions of a coarse correlated equilibrium.

Definition 2.4.5 (Coarse Correlated Equilibrium - CCE). A randomized action pro-

file a ∈ ∆(A1 × . . . × An) is a coarse correlated equilibrium if for any player i ∈ [n]

and any action a′i ∈ Ai:

UM
i (a; vi) ≥ UM

i (a′i, a−i; vi) (2.16)

Therefore, in order to quantify the price of total anarchy it suffices to pro-

vide bounds on the price of anarchy of these static equilibrium concepts, i.e. it

suffices to bound the CE-POA and the CCE-POA defined as:

CE-POA = sup
a∈CE

OPT(v)

Ea [SWM(a; v)]
(2.17)

and correspondingly for CCE.
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Part II

Theory of Smooth Mechanisms
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3

SMOOTH MECHANISMS AND EFFICIENCY

“At the core of economics is the concept of efficiency.”

– Leibenstein, 1966, p.392

In this chapter we will provide the main definition of a smooth mechanism,

which is based on a best-response property. We will give the implications that

smoothness has on the efficiency of a mechanism at equilibrium. We will also

show that this efficiency extends to learning behavior in a repeated game setting

and even when there is incomplete information. At a high level, the results of

this chapter can be summarized by the following high-level theorem.

Informal Theorem 1. Efficiency analysis of mechanisms in the non-robust outcome

of complete information pure Nash equilibrium, directly extends to robust learning and

incomplete information outcomes, as long as the analysis is based on a simple best-

response property.

3.1 Definition and Efficiency under Complete Information

In this section we introduce the notion of a smooth mechanism. Our notion is

similar in spirit to the smoothness of games of Roughgarden [59], but is tailored

to the mechanism design settings where players have quasilinear preferences.

Definition 3.1.1 (Smooth Mechanism). A mechanism M is (λ, µ)-smooth for some

λ, µ ≥ 0, if for any valuation profile v ∈ V and for each player i ∈ [n] there exists a
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randomized action a∗
i (v), such that for any action profile a ∈ A:

∑
i∈[n]

UM
i (a∗

i (v), a−i; vi) ≥ λ · OPT(v)− µ · RM(a) (3.1)

Instantiated to a combinatorial auction setting, the definition of a smooth

mechanism has a very natural interpretation as guaranteeing an approximate

analog of market cleaning prices for the items. Bikhchandani [9] showed that

pure Nash equilibria of the mechanism defined by running independent simul-

taneous first price auctions for each item, have a one to one correspondence to

market equilibria and thereby define market clearing prices, which implies that

the outcome is efficient. Market clearing prices are guaranteed when each par-

ticipant can modify her bid to claim her optimal bundle at the price paid for this

bundle in the current solution.

A mechanism is (1, 1)-smooth, in essence if the above property is satisfied

only in aggregate, but for any outcome of the mechanism, not only at equilib-

rium. While a (λ, µ)-smooth mechanism satisfies this only approximately, both

in terms of the bundle claimed, as well as the price paid for it. In addition, un-

like the pure equilibrium analysis, it requires the modified bid to to not depend

on the actions of the rest of the players, but can depend on the whole valuation

profile, as if the player had complete information on the valuations of his oppo-

nents. Thus you can view the smoothness definition as a complete information

definition, even though, as we will show in the next section, it directly implies

guarantees for incomplete information settings.

We first show that smooth mechanisms have low price of anarchy in the

complete information setting and that this result extends to all coarse correlated

equilibria (and hence vanishing external regret sequences of play).
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Theorem 3.1.2. If a mechanism is (λ, µ)-smooth then every coarse correlated equilib-

rium achieves social welfare at least λ
max{1,µ} of the optimal welfare, i.e.

CCE-POA ≤ max{1, µ}
λ

.

Proof. Let a ∈ ∆(A1 × . . . × An), be a CCE of the mechanism. Since no players

wants to deviate to a∗
i (v):∑
i∈[n]

UM
i (a; vi) ≥

∑
i∈[n]

UM
i (a∗

i (v), a−i; vi)

By the (λ, µ)-smoothness property for each a in the support of a:∑
i∈[n]

UM
i (a; vi) ≥ λOPT(v)− µRM(a)

Since players have quasi-linear utilities we have:

Ea

[
SWM(a; v)

]
=
∑
i∈[n]

UM
i (a; vi) +RM(a)

and thereby:

Ea

[
SWM(a; v)

]
≥ λOPT(v)− (µ− 1)RM(a)

The result follows if µ ≤ 1. When µ > 1, to get the result, we note that

Ea,Xi(a) [vi(Xi(a))] ≥ Ea,Pi(a) [Pi(a)], since by the voluntary participation assump-

tion, players always have the possibility to withdraw from the mechanism and

get 0 utility. Thus Ea

[
SWM(a; v)

]
≥ RM(a).

EXAMPLE 3.1.1. (Single-Item First Price Auction - FPA) In the single item first

price auction, one indivisible item is to be allocated among n bidders. Hence,

the allocation space is Xi ∈ {0, 1} and the set of feasible allocations are the ones

satisfying
∑

i∈[n] xi ≤ 1. Each bidder i ∈ [n] has a value vi ∈ R+ for getting the

item. The mechanism asks each player to submit a bid bi. The highest bidder

wins the item and pays his bid (ties are broken arbitrarily).
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Lemma 3.1.3. The first price auction is a (1− 1/e, 1)-smooth mechanism.

Proof. To see why smoothness holds, note that under any valuation profile v =

(v1, . . . , vn), the highest value player (wlog player 1) can deviate to submitting

a randomized bid b∗
1 drawn from a distribution with density function f(x) =

1
v1−x

and support [0, (1− 1/e)v1], while all non-highest value players should just

deviate to bidding 0. No matter what the rest of the players are bidding, the

utility of the highest bidder from the deviation is:

U FPA
1 (b∗

1, b−1; v1) ≥
∫ (1− 1

e)v1

maxi̸=1 bi

(v1 − x)f(x)dx ≥
(
1− 1

e

)
v1 −max

i
bi

=

(
1− 1

e

)
OPT(v)−RM(b)

Therefore, we conclude that any coarse correlated equilibrium of a first price

auction and hence any vanishing external regret sequence of play in an infinitely

repeated first price auction game, will achieve social welfare at least
(
1− 1

e

)
≈

.63 of the optimal welfare.

Comparison to smooth games of [59]. The smoothness property of a mech-

anism has several similarities with Roughgarden’s notion of smoothness of

games. To think of a mechanism as a game, we will consider the mechanism

also as a player, with utility
∑

i Pi(a) and no strategic decision to make. Our

definition of a (λ, µ)-smooth mechanism, is closely related to the game being

(λ, µ − 1)-smooth in the sense of [59], with the difference that we dropped the

term −(µ− 1)
∑

i U
M
i (a; vi) on the right hand side, to make the definition more

natural in the context of mechanisms. Note that this change makes the defi-

nitions incomparable, as with an arbitrary action profile a, the player utilities
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UM
i (a; vi) can be negative. Thus a mechanism can be (λ, µ)-smooth under our

definition, but the game that it defines might not be (λ, µ − 1)-smooth. For in-

stance, the first price auction is not a
(
1− 1

e
, 0
)
-smooth game (without any tech-

nical modification to the smoothness definition, such as viewing the auction-

eer as an extra player, assuming players don’t overbid etc.), but as we already

showed it is a
(
1− 1

e
, 1
)
-smooth mechanism.

This change also enables our composability of mechanisms results and also

enables tighter bounds on the efficiency of mechanisms. Also it allows us to

prove a direct extension theorem of the efficiency guarantees to incomplete

information games without having to alter the complete information analy-

sis or the complete information smoothness definition. This is not true for

smooth games, where to prove extension theorems to incomplete information

games, one needs to alter and strengthen the complete information property

(see Roughgarden [60] or the universal smoothness of Syrgkanis [65]).

3.2 Extension to Incomplete Information

Next we consider the case where the valuation of each player is drawn from a

distribution Fi over his valuation space Vi. These distributions are independent

and are common knowledge. A mechanism M = (A, X, P ) now defines a game

of incomplete information as defined in Section 2.4.1.

The main result of this section is to show that if a mechanism is smooth

according to definition 3.1.1 then it achieves a good fraction of the expected

optimal social welfare at every Bayes-Nash equilibrium of the incomplete infor-

mation game, irrespective of the distributions of valuations.
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Note that the deviating strategy a∗
i (v) of player i required by the smoothness

property depends on the whole valuation profile v and not only on the valu-

ation of player i. As a result a∗
i (v) cannot be directly used as deviation for the

player in the incomplete information game, as she is not aware of the valuations

v−i. We use random sampling to handle the dependence on the values of other

players, so as to construct a deviation that depends only on the value of the

player and hence is valid for the incomplete information game. Such a random

sampling approach was first used in Christodoulou et al. [15] in the context

of analyzing the efficiency of simultaneous second price auctions under incom-

plete information. Here we portray that it is a much more general technique,

applying to any smooth mechanism.

Theorem 3.2.1. If a mechanism M is (λ, µ)-smooth, then for any vector of independent

valuation distributions F = (F1, . . . ,Fn), every mixed Bayes-Nash Equilibrium has

expected social welfare at least λ
max{1,µ} of the expected optimal social welfare, i.e.

BAYES-NE-POA ≤ max{1, µ}
λ

.

Proof. We will prove it for the case of a pure Bayes-Nash equilibrium s ∈ Σ (the

generalization to mixed equilibria is straightforward). Consider the following

randomized deviation for each player i that depends only on the information

that he has which is his own value vi and the equilibrium strategies s(·): He

random samples a valuation profile w ∼ F . Then he plays according to the

randomized action a∗
i (vi,w−i), i.e., the player deviates using the randomized

action guaranteed by the smoothness property for his true type vi and the ran-

dom sample of the types of the others w−i. Since this is not a profitable deviation
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for player i:

Ev

[
UM
i (s(v);vi)

]
≥ Ev,w

[
UM
i (a∗

i (vi,w−i), s−i(v−i);vi)
]

= Ev,w

[
UM
i (a∗

i (wi,w−i), s−i(v−i);wi)
]

= Ev,w

[
UM
i (a∗

i (w), s−i(v−i);wi)
]
,

where the first equation is an exchange of variable names and regrouping using

independence. Summing over players and using smoothness:

Ev

∑
i∈[n]

UM
i (s(v);vi)

 ≥ Ev,w

∑
i∈[n]

UM
i (a∗

i (w), s−i(v−i);wi)


≥ Ev,w

[
λOPT(w)− µRM(s(v))

]
= λEw [OPT(w)]− µEv

[
RM(s(v))

]
By quasi-linearity of utility and using the fact that players have the possibility

to withdraw from the mechanism, we get the result along the same lines as in

the proof of Theorem 3.1.2.

EXAMPLE 3.2.1. (Asymmetric First Price Auction) Following on our running

example (see Example 3.1.1), consider a first price auction under incomplete in-

formation where the valuation vi of each bidder for the item is drawn indepen-

dently from some commonly known distribution Fi. Then the strategy space Σi

is the set of mappings from a value vi to a bid bi(vi), i.e. Σ = R → R.

Observe that we allow for different bidders to have different valuation dis-

tributions. This setting is commonly referred to as an asymmetric first price

auction (see [51]) and has a long history in the economic literature (see Section

4.3 of Krishna [43]). It is well established that solving for a Bayes-Nash equilib-

rium in this setting (unlike the symmetric case) is a daunting task and in most

47



cases a closed form solution to the equilibrium bidding function does not exist.

Most papers in the area have considered only special instances of two bidders

with specific parametric distributions (i.e. two uniform distributions with dif-

ferent upper and lower bounds [39]).

As we showed in Lemma 3.1.3 the first price auction is a (1− 1/e, 1)-smooth

mechanism. Hence, Theorem 3.2.1 implies that any Bayes-Nash equilibrium of

the asymmetric first price auction, with arbitrary number of players and arbi-

trary independent distributions achieves at least (1− 1/e) ≈ .63 of the expected

optimal welfare. Thus, our smoothness approach yields a bound on the social

welfare achievable by any Bayes-Nash equilibrium without having to solve for

the equilibrium! In the next chapters we will see how this approach will allow

us to go far beyond the single item auction to simultaneous or sequential first

price auctions, where solving for an equilibrium seems an even more impossible

analytic task.

One natural question is whether the bound of 1−1/e is a tight one, i.e. is there

an example that achieves such an inefficiency? In the appendix Section A.1 we

present a lower bound example where the Bayes-Nash equilibrium achieves .93

of the optimal. Closing the gap between upper and lower bound for the Bayes-

Nash equilibrium of the asymmetric first price auction is an interesting open

question. For the case of correlated valuations we show in the appendix Section

A.2 that the bound of e
e−1

on the Bayes-Nash price of anarchy is tight. e
e−1

is

an upper bound even for correlated valuations, since the single-item first price

auction actually satisfies the stronger semi-smoothness condition of Lucier et

al. [47], which leads to bounds on the price of anarchy that extend to correlated

valuations too.
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3.3 Extension to No-Regret under Incomplete Information

We consider the following setting of a repeated game under incomplete infor-

mation: there exist n equally sized populations of players. For each i ∈ [n]

population Pi consists of a finite set of r players. Each player q ∈ Pi has some

valuation Vi(q). We denote with Fi ∈ ∆(Vi) the empirical distribution of values

in population Pi and with vi a random sample from Fi. In other words, the

value of a randomly chosen player from population Pi is distributed according

to Fi.

We will describe a repeated game structure and we will argue that any no-

regret sequence of the game will, essentially, converge almost surely to the set

of BAYES-CCE as time goes to infinity. Then we will show that the efficiency

guarantee of a smooth mechanism extends to the set of BAYES-CCE and thereby

to the limit average welfare of any no-regret sequence of the repeated game.

Repeated Game 1: Repeated Random Matching Game.

At each iteration t:
1 First, each player q ∈ Pi in each population Pi picks an action atiq. For each

population i ∈ [n] we denote with µt
i : A

Pi
i a function that takes as input a player

q ∈ Pi and outputs his action µt
i(q) = atiq.

2 Then we pick from each population i one player qti ∈ Pi uniformly at random.
Let qt = (qt1, . . . , q

t
n) be the chosen profile of players and

µt(qt) = (µt
1(q

t
1), . . . , µ

t
n(q

t
n)) be the profile of chosen actions.

3 Then each player qti participates in an instance of mechanism M, in the role of
player i ∈ [n], with action µt

i(q
t
i) and experiences a utility of UM

i (µt(qt);Vi(q
t
i)).

The rest of the players experience zero utility.

We assume that each player qi ∈ Pi, uses some no-regret learning rule to play
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in this repeated game.

REMARK 3.3.1. We point out that for each player in each population to achieve

no-regret he does not need to know the distribution of values in the remainder

populations. There exist algorithms that can achieve the no-regret property and

simply require an oracle that returns the utility of a player at each iteration.

Thus all we need to assume is that each player receives as feedback his utility at

each iteration.

REMARK 3.3.2. We also note that our results would extend to the case where

at each period multiple matchings are sampled independently and players po-

tentially participate in more than one instance of the mechanism M and po-

tentially with different players from the remaining population. The only thing

that the players need to observe in such a setting is their average utility that re-

sulted from their action µt
i(q) ∈ Ai from all the instances that they participated

at the given period. Such a scenario seems an appealing model in online ad

auction marketplaces where players receive only average utility feedback from

their bids.

Bayesian Price of Total Anarchy. In this repeated game setting we want to

compare the average social welfare of any sequence of play where each player

uses a vanishing external or swap regret algorithm versus the average optimal

welfare. Moreover, we want to quantify the worst-case such average welfare

over all possible valuation distributions within each population:

sup
F1,...,Fn

lim sup
T→∞

1
T

∑T
t=1 OPT(V (qt))

1
T

∑T
t=1 SW

M(µt(qt);V (qt))
(3.2)

Since the valuation of the chosen player is re-drawn independently at every time

step, the average optimal welfare will converge almost surely to the expected
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ex-post optimal welfare Ev[OPT(v)] of the static incomplete information setting.

In the remainder of this section we will prove the following theorem:

Theorem 3.3.1. If a mechanism is (λ, µ)-smooth then the Bayesian price of total anar-

chy of any vanishing external regret sequence of play of the repeated matching game is

at most max{1,µ}
λ

.

Roadmap of the proof. In the next subsection we define Bayesian general-

izations of correlated and coarse correlated equilibria and in subsection 3.3.1,

we essentially show that any vanishing external regret sequence of play of the

random matching repeated game, will converge almost surely to the Bayesian

version of a coarse correlated equilibrium of the static incomplete information

game. Therefore the Bayesian price of total anarchy will be upper bounded by

the Bayesian price of anarchy of these coarse correlated equilibria. Finally, in the

last subsection we show that the price of anarchy bound of smooth mechanisms

directly extends to Bayesian coarse correlated equilibria, thereby providing an

upper bound on the Bayesian price of total anarchy of the repeated game.

3.3.1 Bayesian Correlated and Coarse Correlated Equilibrium

Defining a correlated equilibrium in an incomplete information game is not

such a straightforward task and several notions have been introduced (c.f.

Forges [29], Bergemann and Morris [7], Caragiannis et al. [13]). The Bayes-

Correlated Equilibrium that we define here is the same as in Section 4.1 of [29]

and corresponds to the correlated equilibrium of a corresponding complete in-

formation game defined as follows: the utility of a player i in the complete
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information game is his ex-ante expected utility from the mechanism. The strat-

egy space of player i is Σi = AVi
i . For a strategy profile s ∈ Σ, the utility of a

player in the complete information game is then:

U ex
i (s) = Ev

[
UM
i (s(v);vi

]
(3.3)

A BAYES-CE and BAYES-CCE are simply a CE and CCE of this complete infor-

mation game. For completeness we provide the formal definitions below.

Definition 3.3.2 (Bayes-Correlated Equilibrium - BAYES-CE). A randomized strat-

egy profile s ∈ ∆(Σ) is a Bayes-correlated Equilibrium if for every s′i ∈ Σi → Σi:

EsEv

[
UM
i (s(v);vi)

]
≥ EsEv

[
UM
i (s′i(vi, si), s−i(v−i);vi)

]
(3.4)

Definition 3.3.3 (Bayes-Coarse Correlated Equilibrium - BAYES-CCE). A ran-

domized strategy profile s ∈ ∆(Σ) is a Bayes-coarse correlated Equilibrium if for every

s′i ∈ Σi:

EsEv

[
UM
i (s(v);vi)

]
≥ EsEv

[
UM
i (s′i(vi), s−i(v−i);vi)

]
(3.5)

REMARK 3.3.3. In the above definitions we assumed that the space Σ =

AV1
1 × . . . × AVn

n admits probability distributions. This is not always obvious,

since this is a space of functions. When the valuation spaces Vi are finite and

probability distributions on the action spaces are well defined, then this is true,

and hence in the above and subsequence definitions that involve probability

distributions over functions AVi
i we will assume that the valuation space Vi is

finite. For continuous valuation spaces, the issue is a special case of the problem

of defining mixed strategies in extensive form games with infinite information

sets and the reader is directed to the classic work of Aumann [4] for one ap-

proach.
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REMARK 3.3.4. We also point out that our definition of BAYES-CCE is inher-

ently different and more restricted than the one defined in Caragiannis et al.

[13]. There, a BAYES-CCE is defined as a joint distribution D over V × A, such

that if (v, a) ∼ D then for any vi ∈ Vi and a′i(vi) ∈ Ai:

E(v,a)

[
UM
i (a; vi)

]
≥ E(v,a)

[
UM
i (a′i(vi), a−i; vi)

]
(3.6)

The main difference is that the product distribution defined by a distribution

in ∆(Σ) and the distribution of values, cannot produce any possible joint dis-

tribution over (V ,A), but the type of joint distributions are restricted to satisfy

a conditional independence property described by Forges [29]. Namely that

a player i’s action is conditionally independent of some other player j’s value,

given player i’s type. Such a conditional independence property seems essential

for the guarantees that we will present in this thesis to extend to a BAYES-CCE

and hence do not seem to extend to the notion given in Caragiannis et al. [13].

However, as we will show in Section 3.3, the no-regret dynamics that we

analyze, which are mathematically equivalent to the dynamics in Caragiannis

et al. [13], do converge to the smallest set of BAYES-CCE that we define and for

which our efficiency guarantees will extend. This extra convergence property is

not needed when the mechanism satisfies the stronger semi-smoothness property

defined in [13] and thereby was not needed to show efficiency bounds in their

setting.

Last, we also describe the concept of an Agent-Form Bayes-Correlated Equilib-

rium (AGENT-BAYES-CE) (c.f. Forges [29]), which is similar to BAYES-CE, with

the restriction that the deviation conditional on a value vi, can only depend on

the previous action si(vi) and not on the whole strategy si. In the definition

of a BAYES-CE, we assume that the player does not regret switching to some
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Bayes No-RegretBayes No-Swap Regret
BAYES-NE

BAYES-CCEAGENT-BAYES-CE
BAYES-CE

Figure 3.1: Comparison among static solution concepts in the incomplete
information setting and connection to no-regret learning under
incomplete information.

other strategy s′i whenever he was using strategy si. Thus the switch s′i can

be viewed as a function of the whole strategy si, in other words, the deviat-

ing action a′i = s′i(vi) of a player with value vi can depend on the action that a

player with value v′i was previously playing. The AGENT-BAYES-CE does not

allow for such dependence. Hence, the set of AGENT-BAYES-CE is a superset of

BAYES-CE.

Definition 3.3.4 (Agent-Form Bayes-Correlated Equilibrium - AGENT-BAYES-CE).

A randomized strategy profile s ∈ ∆(Σ) is a Bayes-correlated Equilibrium if for any

i ∈ [n], vi ∈ Vi and a′i : Ai → Ai:

EsEv|vi=vi

[
UM
i (s(v);vi)

]
≥ EsEv|vi=vi

[
UM
i (a′i(si(vi)), s−i(v−i);vi)

]
(3.7)

Observe that a BAYES-CCE is a superset of AGENT-BAYES-CE, since the type

of deviations allowed in the definition of a BAYES-CCE belong to the class of de-

viations allowed in the definition of a AGENT-BAYES-CE. Thus the stability re-

strictions are weaker under a BAYES-CCE. Figure 3.3.1 depicts the comparison

of the different solution concepts related to games of incomplete information.
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3.3.2 Convergence to Bayes-Coarse Correlated Equilibria

For any given sequence of play of the repeated random matching game we de-

fine the following sequence of strategy-value pairs (st, vt) where s : V → A:

st(v) =


µt(qt) if V (qt) = v

arbitrary a ∈ A o.w.
(3.8)

and vt = V (qt). Then observe that all that matters to compute the average social

welfare of the game for any given time step T , is the empirical distribution of

(s, v), up till time step T , denoted as DT , i.e. if (sT ,vT ) is a random sample from

DT :
1

T

T∑
t=1

SWM(µt(qt);V (qt)) = E(sT ,vT )

[
SWM(sT (vT );vT )

]
(3.9)

Lemma 3.3.5 (Almost Sure Convergence to BAYES-CCE). Let D ∈ ∆(Σ×V) be a

joint distribution, such that there is a subsequence of {DT}T , converging in distribution

to D. Then, almost surely, D is a product distribution, i.e. D = Ds × Dv, with

Ds ∈ ∆(Σ) and Dv × ∆(V) such that Dv = F and Ds ∈ BAYES-CCE of the static

incomplete information game with distributional beliefs F .

Proof. For a q ∈ Pi let xt
i(q) = 1qti=q. Since the sequence has vanishing regret for

each player in population Pi, it must be that for any qi ∈ Pi and any s∗i : V → A:
T∑
t=1

xt
i(qi)·

(
UM
i (µt

i(qi), µ
t
−i(q

t
−i);Vi(qi))− UM

i (s∗i (V (qi)), µ
t
−i(q

t
−i);Vi(qi))

)
≥ −o(T )

Summing over all players in Pi we get:
T∑
t=1

{
UM
i (µt(qt);Vi(q

t
i))− UM

i (s∗i (Vi(q
t
i)), µ

t
−i(q

t
−i);Vi(q

t
i))
}
≥ −o(T )

Using the definition of st from Equation (3.8) and vti = Vi(q
t
i), we can rewrite the

above as:
T∑
t=1

{
UM
i (st(vt); vti)− UM

i (s∗i (v
t
i), s

t
−i(v

t
−i); v

t
i)
}
≥ −o(T )
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For any fixed T , let DT
s ∈ ∆(Σ) denote the empirical distribution of st and let s

be a random sample from DT
s . For each s ∈ Σ, let Ts ⊂ [T ] denote the time steps

such that st = s for each t ∈ Ts. Then we get:

Es

[
1

|Ts|
∑
t∈Ts

{
UM
i (s(vti); v

t
i)− UM

i (s∗i (v
t
i), s−i(v

t
−i); v

t
i))
}]

≥ −o(T )

T

For any s ∈ Σ, let Ts,v = {t ∈ Ts : v
t = v}. Then we can re-write:

Es

[∑
v∈V

|Ts,v|
|Ts|

{
UM
i (s(v); vi)− UM

i (s∗i (vi), s−i(v−i); vi)
}]

≥ −o(T )

T
(3.10)

Now we observe that |Ts,v |
|Ts| is the empirical frequency of the valuation vector

v ∈ V , when filtered at time steps where the strategy vector was s. Since at each

time step t the valuation vector vt is picked independently from the distribu-

tion of valuation profiles F , this is the empirical frequency of Ts independent

samples from F .

By standard arguments from empirical processes theory, if Ts → ∞ then

this empirical distribution converges almost surely to the distribution F . On

the other hand if Ts doesn’t go to ∞, then the empirical frequency of strategy s

vanishes to 0 as T → ∞ and therefore has measure zero in the above expectation

as T → ∞. Thus for any convergent subsequence of {DT}, if D is the limit

distribution, then if s is in the support of D, then almost surely the distribution

of v conditional on strategy s is F . Thus we can write D as a product distribution

Ds ×F .

Moreover, if we denote with v the random variable that follows distribution

F , then the limit of Inequality (3.10) for any convergent subsequence, will give

that:

a.s.: EsEv

[
UM
i (s(v);vi)− UM

i (s∗i (vi), s−i(v−i);vi)
]
≥ 0

56



Thus DT
s is in the set of BAYES-CCE of the static incomplete incomplete in-

formation game among n players, where the valuation profile is drawn from F .

Theorem 3.3.6. The Bayesian price of total anarchy is upper bounded by the Bayesian

price of anarchy of Bayesian coarse correlated equilibria.

Proof. Let D ∈ ∆(Σ×V) be a joint distribution, such that there is a subsequence

of {DT}T , converging in distribution to D. Then by Lemma 3.3.5, almost surely,

D is a product distribution, i.e. D ∈ ∆(Σ) × ∆(V) and that the marginal on V

is equal to F and the marginal on Σ is a BAYES-CCE of the static incomplete

information game with distributional beliefs F .

Therefore, if ρ is the BAYES-CCE − POA of the mechanism, and if (s,v) is a

random sample from D, then almost surely:

Es,v

[
SWM(s(v);v)

]
≥ 1

ρ
Ev [OPT(v)] (3.11)

Thus the limit average social welfare of any convergent subsequence will be at

least 1
ρ
Ev [OPT(v)], which then implies that almost surely:

lim inf
T→∞

1

T

T∑
t=1

SWM(µt(qt);V (qt)) ≥ 1

ρ
Ev [OPT(v)] =

1

ρ
lim
T→∞

1

T

T∑
t=1

OPT(V (qt))

Thus for any non-measure zero event, for any ϵ, there exists a f(ϵ) such that for

any T ≥ f(ϵ):

1

T

T∑
t=1

SWM(µt(qt);V (qt)) ≥ 1

ρ

1

T

T∑
t=1

OPT(V (qt))− ϵ

With no loss of generality we can assume that Ev [OPT(v)] > 0 (o.w. valuations

are all zero and theorem holds trivially). The average optimal welfare converges

almost surely to Ev [OPT(v)], we get that for any non-measure zero event, there
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exists a g(δ) such that for T ≥ g(δ), 1
T

∑T
t=1 OPT(V (qt)) is bounded away from

zero. Thereby, we can turn the additive error into a multiplicative one, i.e. for

any non-measure zero event and for any ϵ′ there exists w(ϵ′) such that for any

T ≥ w(ϵ′):

1

T

T∑
t=1

SWM(µt(qt);V (qt)) ≥ 1

ρ
(1 + ϵ′)

1

T

T∑
t=1

OPT(V (qt))

This implies that almost surely:

lim sup
T→∞

1
T

∑T
t=1 OPT(V (qt))

1
T

∑T
t=1 SW

M(µt(qt);V (qt))
≤ ρ = BAYES-CCE-POA

3.3.3 Efficiency of Bayes-Coarse Correlated Equilibria

Theorem 3.3.7. If a mechanism M is (λ, µ)-smooth, then for any vector of independent

distributional beliefs Fi, every Bayesian Coarse Correlated Equilibrium has expected

social welfare at least λ
max{1,µ} of the expected optimal social welfare, i.e.

BAYES-CCE-POA ≤ max{1, µ}
λ

.

Proof. In the proof of Theorem 3.2.1, we essentially showed that for any strategy

profile s ∈ Σ:∑
i∈[n]

Ev,w

[
UM
i (a∗

i (vi,w−i), s−i(v−i);vi)
]
≥ λEw [OPT(w)]− µEv

[
RM(s(v))

]
where a∗

i (v) is the smoothness deviation and where w is an independent random

sample from F .

Let s ∈ ∆(Σ), be a BAYES-CCE. Since no player i, wants to deviate to any

strategy s∗i (vi) in the support of the randomized strategy a∗
i (vi,w−i), we get that:

EsEv

[
UM
i (s(v);vi)

]
≥ EsEv,w

[
UM
i (a∗

i (vi,w−i), s−i(v−i);vi)
]
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Combining the above two inequalities, we get:

EsEv

[
UM
i (s(v);vi)

]
≥ λEw [OPT(w)]− µEsEv

[
RM(s(v))

]
By quasi-linearity of utility and using the fact that players have the possibility

to withdraw from the mechanism, we get the result, by standard manipulations

(see Theorem 3.1.2).
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4

SIMULTANEOUS COMPOSABILITY

Most analyses of competitive bidding situations are based on the assumption

that each auction can be treated in isolation. This assumption is sometimes

unreasonable.

– Milgrom and Weber, 1982, p. 1117

Mechanisms rarely run in isolation but rather, several mechanisms take place

simultaneously and players typically have valuations that are complex func-

tions of the outcomes of different mechanisms.

In this chapter we analyze a formal model of such a simultaneous occurring

mechanism setting and show the following informal theorem:

Informal Theorem 2. If each individual mechanism is (λ, µ)-smooth and the value

of a player over allocations of mechanisms satisfies a complement-free assumption, then

the global market consisting of all mechanisms achieves welfare at equilibrium at least

λ
max{1,µ} of the optimal.

The sections in this chapter will elaborate on what we mean by a complement-

free assumption across mechanisms and will provide the formal proof of this the-

orem.
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4.1 Simultaneous Composition Framework

We consider the following setting: there are n bidders and m mechanisms. Each

mechanism Mj = (Aj, Xj, P j) is defined on its own mechanism design setting

(n,X j,Vj).

We assume that a player has a valuation over vectors of outcomes from the

different mechanisms: vi : Xi → R+ where Xi = X 1
i × . . .×Xm

i . A player’s utility

is still quasi-linear in this extended setting in the sense that his utility from an

allocation vector xi = (x1
i , . . . , x

m
i ) and payment vector pi = (p1i , . . . , p

m
i ) is given

by:

ui(xi, pi; vi) = vi(x
1
i , . . . , x

m
i )−

m∑
j=1

pji (4.1)

In this chapter we will consider the case where all mechanisms take place si-

multaneously (see Chapter 5 for the case of sequential mechanisms). Hence, a

player’s action space in the game is to report an action aji at each mechanism

j ∈ [m].

The simultaneous composition of m mechanisms can be viewed as a global

mechanism M = (A, X, P ), where Ai = A1
i×. . .×Am

i , X = X 1×. . .×Xm, X : A →

X is defined as X(a) = (X1(a1), . . . , Xm(am)) and P (a) =
∑

j∈[m] P
j(aj). Our

goal is to give properties of the individual mechanisms that guarantee efficiency

of the global mechanism.
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4.2 Composability of Smooth Mechanisms

In order to infer good properties of the global mechanism from properties of

individual mechanisms, we will need to assume that player valuations satis-

fies some no complement assumption across outcomes of different mechanisms.

Roughly speaking this means that winning an allocation in some mechanism

does not increase a player’s marginal valuation in a different mechanism. In

section 4.5 we will relax this assumption to the case of restricted complements.

When each mechanism is a single item auction, then the value of a player is

a set function and the no complement condition is captured by well-understood

classes of valuations, such as submodular, fractionally subadditive or XOS, sub-

additive etc. (see Lehmann et al. [45] for an overview). However, in our setting

the valuation of a player is a function on an abstract product space of allocations.

Hence, we need to define generalizations of these classes of valuations.

At a high level, for our simultaneous composability theorem we will make

the following type of assumption: assume for the moment that a mechanism

can be absent from the market (though we will not need it for our main theo-

rem), then we require that the marginal valuation of player for any allocation

from some mechanism j, does not increase if a mechanism j′ enters the market

and awards player i any allocation xj′

i ∈ X j
i . This can be viewed as a natural

generalization of submodular valuations when the allocation spaces are binary

X j
i ∈ {0, 1}. Observe that our generalization of submodular valuations across

mechanisms makes no assumption on how the valuation behaves across differ-

ent allocations from an individual mechanism.

We will show in the next sections that if the valuation space Vj
i of each
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mechanism admits single-minded valuations (i.e. positive value only for one

allocation) then any valuation that satisfies the above complement-free condi-

tion, can be written as a maximum over additively separable valuations, i.e.

vi(xi) = maxℓ∈L
∑

j∈[m] v
j,ℓ(xj

i ). We will refer any such valuation as XOS across

mechanisms.

To allow for composability of mechanisms where the valuation space does

not include single-minded valuations, we will use a generalization of the class

of XOS valuation defined as follows: for any product space Ci = C1
i × . . . × Cm

i ,

where Cj
i is a class of valuations over allocations from mechanism j, we will

say that a mechanism is XOS-Ci if it can be expressed as a maximum over addi-

tively separable valuations, where the induced valuations vj,ℓ fall into the class

Cj
i . In Section 4.3, we will give several theorems on the expressiveness of such

functions when the classes Cj
i are interesting special cases, such as all monotone

valuations with respect to some partial order on the allocations or the class of

all monotone submodular valuations with respect to some lattice defined on the

allocation space. Moreover, we will provide the natural generalization of other

classes of set functions to products of allocation spaces and show that they are

a subclass of XOS valuations, or that they can be well-approximated with XOS

valuations.

Definition 4.2.1 (XOS-C). For any C = C1 × . . . × Cm, with Cj ⊆ (X j
i → R+),

a valuation v : Xi → R+ is XOS-C across mechanisms if there exist an index set L

(potentially infinite) of additively separable valuations, such that:

v(xi) = max
ℓ∈L

∑
j∈[m]

vj,ℓ(xj
i ). (4.2)

and for all ℓ ∈ L: vj,ℓ ∈ Cj .

The latter is the generalization of the class of XOS set functions, which are
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functions f : 2[m] → R+, that can be written as a maximum over additive func-

tions: f(S) = maxℓ∈L
∑

j∈S w
j,ℓ. These are functions that can be written as the

XOR of ORs of singleton set functions (see Lehmann et al [45])1 and they are a

superset of submodular set functions. In our generalization we have replaced

the signleton valuations, with value functions that depend only on the alloca-

tion of a single mechanism j ∈ [m] and such that these value functions belong to

some class of functions Cj . The latter restriction to a class of the local valuations

did not even make sense in the case of set functions.

Theorem 4.2.2 (Simultaneous Composition). Consider a simultaneous composition

of m (λ, µ)-smooth mechanisms and let Ci = V1
i × . . . × Vm

i . If the valuation vi :

Xi → R+ of each player across mechanisms is XOS-Ci, then the global mechanism is

also (λ, µ)-smooth.

Proof. First we show a Lemma, which captures the essence of the proof. Based

on the Lemma, it suffices to show composability when the players valuations is

additively separable, which is relatively straightforward.

Lemma 4.2.3. Suppose that a mechanism is (λ, µ)-smooth when valuation profiles

come from some class V . Then it is also (λ, µ)-smooth when the valuation of each player

i comes from the class max−Vi, consisting of any valuation which can be written as:

vi(x) = max
ℓ∈Li

vℓi (x) (4.3)

with vℓi ∈ Vi for each ℓ ∈ Li.

Proof. Fix a valuation profile v = (v1, . . . , vn) ∈ max−V . We remind that OPT(v)

is the optimal welfare for v and x∗
i (v) the allocation of player i in the welfare

1The XOR of two set functions is defined as: (v1 ⊕ v2)(S) = max{v1(S), v2(S)} and the OR is
defined as (v1 ∨ v2)(S) = maxT⊆S v1(T ) + v2(S − T ). A singleton set function is any function of
the form: v(S) = wj · 1{j ∈ S}.
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optimal allocation. For each player i, denote with v∗i ∈ Vi, the valuation vℓi such

that:

v∗i (x
∗
i (v)) = max

ℓ∈Li

vℓi (x
∗
i (v))

Thus vi(x
∗
i (v)) = v∗i (x

∗
i (v)) and for any xi ∈ Xi: vi(xi) ≥ v∗i (xi). Moreover, let

v∗ = (v∗1, . . . , v
∗
n) ∈ V .

Since the mechanism is (λ, µ)-smooth when valuations come from class V ,

for each player i ∈ [n], there exists a randomized action a∗
i (v

∗) ∈ ∆(Ai), such

that for any action profile a ∈ A:

∑
i∈[n]

UM
i (a∗

i (v
∗), a−i; v

∗
i ) ≥ λ · OPT(v∗)− µ · RM(a)

Since for any xi ∈ Xi: vi(xi) ≥ v∗i (xi), by quasi-linearity of utilities, it is easy to

see that for any a ∈ A: UM
i (a; vi) ≥ UM

i (a; v∗i ). Thus:

∑
i∈[n]

UM
i (a∗

i (v
∗), a−i; vi) ≥

∑
i∈[n]

UM
i (a∗

i (v
∗), a−i; v

∗
i ) ≥ λ · OPT(v∗)− µ · RM(a)

Moreover, OPT(v∗) ≥ w(x∗(v); v∗). Since vi(x
∗
i (v)) = v∗i (x

∗
i (v)): w(x∗(v); v∗) =

w(x∗(v); v) = OPT(v). Thus: OPT(v∗) ≥ OPT(v). Combining with the previous

inequality gives us:

∑
i∈[n]

UM
i (a∗

i (v
∗), a−i; vi) ≥ λ · OPT(v)− µ · RM(a)

Thus the strategies a∗
i (v

∗) (i.e. deviate as if your valuation was the one

matching your value for the optimal allocation) constitute the actions required

by the smoothness definition. Since the above holds for any initial valuation

profile v ∈ max−V , the Lemma follows.

By Lemma 4.2.3 it suffices to prove the theorem for the case where the valu-
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ation of each player i is of the form:

vi(x) =
∑
j∈[m]

vji (x
j
i ) (4.4)

But in this case the utility of a player essentially decomposes into the sum

of his utilities from each mechanism j ∈ [m]. Therefore, if we denote with

vj = (vj1, . . . , v
j
n) the local valuation profile for each mechanism j ∈ [m], by

considering a∗
i (v) = (a1,∗

i (v1), . . . , am,∗
i (vm)), then by (λ, µ)-smoothness of each

mechanism, for any action profile a ∈ A:

∑
i∈[n]

UM
i (a∗

i (v), a−i; vi) =
∑
j∈[m]

∑
i∈[n]

U
Mj

i (aj,∗
i (vj), aj−i; v

j
i )

≥
∑
j∈[m]

λOPTj(vj)− µRMj(aj)

= λOPT(v)− µRM(a)

Thus the deviations a∗
i (v), which correspond to the independent local random-

ized deviations designated by smoothness of each individual mechanism, imply

smoothness of the global mechanism.

In the last part of the thesis we will give a number of applications of this

result, while at the end of this chapter we will give a concrete example of how

the theorem applies to the case of simultaneous single-item first price auctions.

Approximate XOS valuations and approximate composability. To enlarge

the applicability of our theorem, it is useful to also consider a relaxation of the

theorem, when the valuations are not XOS−Vi, but rather are approximated by

them.

66



Definition 4.2.4 (β-XOS-Ci). A valuation vi : Xi → R+ is β − XOS − Ci across

mechanisms for some β ≥ 1, if there exist an XOS-Ci valuation ṽi, such that for all

xi ∈ Xi:

β · ṽi(xi) ≥ vi(xi) ≥ ṽi(xi) (4.5)

An easy adaptation of the proof of Theorem 4.2.2 yields the following ap-

proximate version of it:

Theorem 4.2.5. Consider a simultaneous composition of m (λ, µ)-smooth mechanisms

and let Ci = V1
i × . . . × Vm

i . If the valuation vi : Xi → R+ of each player across

mechanisms is β-XOS-Ci, then the global mechanism is
(

λ
β
, µ
)

-smooth.

The essence of the proof of this theorem is a relaxed version of Lemma 4.2.3,

which will be useful in other parts of the thesis.

Lemma 4.2.6. Suppose that a mechanism is (λ, µ)-smooth when valuation profiles

come from some class V . Then it is
(

λ
β
, µ
)

-smooth when the valuation of each player i

comes from the class β-max-Vi, consisting of any valuation which satisfies:

β ·max
ℓ∈Li

vℓi (x) ≥ vi(x) ≥ max
ℓ∈Li

vℓi (x) (4.6)

for some index set Li and with vℓi ∈ Vi for each ℓ ∈ Li.

4.3 Complement Free Valuations across Mechanisms

In this section we delve into the structure of complement-free valuations across

mechanisms and examine the expressiveness of XOS valuations across mecha-

nisms.
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Since we focus on the valuation of a specific player i, for notational sim-

plicity we will drop the index i in the current section. Hence, we will analyze

classes of complement free valuations v : X → R+ defined on a product space

of allocations X = X1 × . . .×Xm. In a mechanism composition setting, Xj is the

set of possible allocations to some player i from mechanism Mj .

4.3.1 Fractionally Subadditive ≡ XOS across Mechanisms

We will first analyze the expressiveness of the class of unconstrained XOS val-

uations, i.e. XOS-C where Cj includes all possible valuation functions and their

approximate version of β-XOS. We will define the class of fractionally subad-

ditive valuations across mechanisms, which is a generalization of fractionally

subadditive set functions. Then we show that it is equivalent to the class of un-

constrained XOS functions, generalizing the result of Feige [23], who showed

the result for the case of set functions. In fact we show that it is equivalent to

the class of XOS-C functions where Cj is any set that contains all single-minded

valuations, i.e. valuations that are non-zero at only one allocation xj ∈ Xj and 0

for any other allocation.

Definition 4.3.1 (Fractionally Subadditive). A valuation is fractionally subadditive

across mechanisms if

v(x) ≤
∑
x̂∈X

αx̂v(x̂),

whenever each coordinate xj is covered by coefficients α = (αx̂)x̂∈X , that is∑
x̂:xj=x̂j

αx̂ ≥ 1.

For comparison, in the case of set functions, a function f : 2[m] → R+ is

fractionally subadditive if for any set S ⊆ [m] and for any fractional cover (α, T )
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of S (i.e. a weighted collection of sets T such that
∑

T∈T :j∈T αT ≥ 1 for all j ∈ S),

v(S) ≤
∑

T∈T αTv(T ).

The main theorem of this section is that Fractionally Subadditive ≡ XOS.

We will actually show the stronger theorem that a relaxed version of fractionally

subadditive valuations, denoted as β-fractionally subadditive is equivalent to the

class of β-XOS.

Definition 4.3.2 (β-Fractionally Subadditive). A valuation is β-fractionally subad-

ditive across mechanisms if

v(x) ≤ β ·
∑
x̂∈X

αx̂v(x̂),

whenever each coordinate xj is covered by coefficients α = (αx̂)x̂∈X , that is∑
x̂:xj=x̂j

αx̂ ≥ 1.

Theorem 4.3.3 (β-XOS ≡ β-Fractionally Subadditive). A valuation is β-

fractionally subadditive across mechanisms if and only if it is β-XOS.

Proof. We will give the proof of the general version of the theorem for β-

fractionally subadditive valuation. We first show that if the valuation is β-XOS

across mechanisms then it is also β-fractionally subadditive across mechanisms.

Suppose that there exists a set of additive valuations L such that:

maxℓ∈L
∑

j∈[m] v
ℓ
j(xj) ≤ v(x) ≤ βmaxℓ∈L

∑
j∈[m] v

ℓ
j(xj). Now consider an allo-

cation x∗ and a fractional cover (ax)x∈X of x∗, i.e. for all j ∈ [m],
∑

x:xj=x∗
j
ax ≥ 1.
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Now we have:∑
x∈X

axv(x) ≥
∑
x∈X

axmax
ℓ∈L

∑
j∈[m]

vℓj(xj) ≥ max
ℓ∈L

∑
x∈X

ax
∑
j∈[m]

vℓj(xj)

= max
ℓ∈L

∑
j∈[m]

∑
x∈X

axv
ℓ
j(xj) ≥ max

ℓ∈L

∑
j∈[m]

vℓj(x
∗
j)

∑
x∈X :xj=x∗

j

ax

≥ max
ℓ∈L

∑
j∈[m]

vℓj(x
∗
j) ≥

1

β
v(x∗)

Thus the valuation is also β-fractionally subadditive.

Now we prove the opposite direction: if a valuation is β-fractionally subad-

ditive across mechanisms then it is also β-XOS across mechanisms. Consider the

following linear program associated with an outcome x∗ ∈ X :

V (x∗) = min
ax

∑
x∈X

axv(x)

s.t.
∑

x:xj=x∗
j

ax ≥ 1 for all j ∈ [m] (4.7)

ax ≥ 0 for all x ∈ X

By the property of β-fractionally subaddtive valuations, since the set of feasible

solutions to the above linear program, constitutes a fractional cover of x∗ we

know that βV (x∗) ≥ v(x∗). In addition we know that we can achieve v(x∗) by

just setting ax∗ = 1 and ax = 0 for any other x ∈ X . Hence, V (x∗) ≤ v(x∗) ≤

βV (x∗).

Now consider the dual of the above linear program:

C(x∗) = max
tj

∑
j∈[m]

tj

s.t.
∑

j:xj=x∗
j

tj ≤ v(x) for all x ∈ X (4.8)

tj ≥ 0 for all j ∈ [m]
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By LP duality we know that V (x∗) = C(x∗). Let tx∗
j be an optimal solution

to the dual associated with allocation x∗. Now consider the following additive

valuation: vx∗
j (xj) = tj if xj = x∗

j and 0 otherwise. By the constraints of the dual

we know that v(x) ≥
∑

j:xj=x∗
j
tj =

∑
j∈[m] v

x∗
j (xj). Therefore:

v(x) ≥ max
x∗∈X

∑
j∈[m]

vx
∗

j (xj)

In addition by LP duality we know:

max
x∗∈X

∑
j∈[m]

vx
∗

j (xj) ≥
∑
j∈[m]

vxj (xj) =
∑
j∈[m]

txj = C(x) = V (x) ≥ 1

β
v(x)

Therefore we get that:

max
x∗∈X

∑
j∈[m]

vx
∗

j (xj) ≤ v(x) ≤ βmax
x∗∈X

∑
j∈[m]

vx
∗

j (xj)

Hence, the valuation is also β-XOS.

REMARK 4.3.1. Observe that in the theorem above we used single-minded com-

ponent valuations vj : Xj → R+ of the form: vx̂j (xj) = c if xj = x̂j and 0 other-

wise. Thus this gives the corollary:

Corollary 4.3.4. A valuation is β-fractionally subadditive across mechanisms if and

only if it is β-XOS-C, with Cj being the class of all single-minded valuations on Xj .

REMARK 4.3.2. Combining the main theorem of this section with the simultane-

ous composability Theorem 4.2.2, we get the following composability corollary

for smooth mechanisms:

Corollary 4.3.5. Consider the simultaneous composition of m (λ, µ)-smooth mecha-

nisms, such that for each j ∈ [m], Vj
i contains all single-minded valuations. Then the
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composition is a
(

λ
β
, µ
)

-smooth mechanism, when players have β-fractionally subaddi-

tive valuations across mechanisms.

4.3.2 Hierarchy of Valuations across Mechanisms

In this section we define the classes of set-submodular and set-subadditive valu-

ations across mechanisms, which are appropriate generalizations of submodular

and subadditive set functions and we show the following generalized version

of the corresponding hierarchy of set functions:

set-submodular ⊂ XOS ⊂ set-subadditive ⊂ Hm − XOS (4.9)

where Hm is the m-th harmonic number.

To define generalizations of submodular and subadditive valuations, we will

assume that each mechanism has a player-specific empty outcome ⊥j ∈ Xj ,

which intuitively corresponds to: ”the mechanism is not existent for player i”.

These outcomes don’t affect the way the mechanism works (e.g. we don’t im-

pose that these outcomes be picked by the mechanism for some strategy profile)

but it just serves as a reference point for the valuations of the bidders: we as-

sume that v(⊥1, . . . ,⊥m) = 0. We will also use the notation xS to denote the

outcome vector that is xj for all j ∈ S and ⊥j otherwise. We start with the

generalization of subadditivity of set valuations:

Definition 4.3.6 (Set-Subadditive). A valuation v : X → R+ is set-subadditive if

and only if for any two sets S1, S2 ⊆ [m] and any x ∈ X :

v (xS1) + v (xS2) ≥ v (xS1∪S2)

72



In addition we define the notion of set-submodularity which extends sub-

modularity of set valuations as follows: the marginal benefit from receiving an

allocation xj at some mechanism Mj decreases as the set of mechanisms from

which the agent has received a non-empty allocation becomes larger.

Definition 4.3.7 (Set-Submodular). A valuation v : X → R+ is set-submodular if

and only if, for any x ∈ X , for any two sets S ⊆ T ⊆ [m] and for any j ∈ [m]:

v
(
xS+{j}

)
− v (xS) ≥ v

(
xT+{j}

)
− v (xT )

Last, we will make the intuitive assumption that if a player wins a non-

empty allocation in more mechanisms then his valuation cannot decrease: a

valuation is set-monotone if for any two sets S ⊆ T : v (xS) ≤ v (xT ). We show

that the relation between these classes of valuations mirrors the relations of the

analogous classes for set functions.

Theorem 4.3.8 (Set-Submodular ⊆ XOS). If a valuation is set - monotone and set-

submodular then it is XOS.

Proof. We will prove that there exist a set of additive valuations L such that

∀x : v(x) = max
ℓ∈L

∑
j∈[m]

vℓj(xj)

Each additive valuation in L will be associated with an outcome x. Denote with

Mj = {j′ ∈ [m] : j′ ≤ j}. The additive valuation associated with an outcome x

will then be:

vxj (x̃j) =


v(xMj

)− v(xMj−1
) if x̃ = xj

0 o.w.
(4.10)

First observe that: ∑
j

vxj (xj) =
∑
j

v(xMj
)− v(xMj−1

) = v(x)
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Next we will show that for all x̃, x ∈ X : v(x̃) ≥
∑

j v
x
j (x̃j). The latter two facts

together will establish that for all x̃ ∈ X : v(x̃) = maxx
∑

j v
x
j (x̃j) which will

complete theorem.

Fix two outcome vectors x̃, x. Let S = {j ∈ [m] : x̃j = xj} and Sj = {j′ ∈ S :

j′ ≤ j} = Mj ∩ S. By the set-monotonicity of the valuation we have:

v(x̃) = v(x̃S, x̃−S) = v(xS, x̃−S) ≥ v(xS)

Now observe that:

v(x̃) ≥ v(xS) =
∑
j∈S

v(xSj
)− v(xSj−1

)

Since for all j ∈ S : Sj ⊆ Mj , by set-submodularity we get that:

v(x̃) ≥ v(xS) =
∑
j∈S

v(xSj
)− v(xSj−1

)

≥
∑
j∈S

v(xMj
)− v(xMj−1

)

=
∑
j∈S

vxj (x̃j) =
∑
j∈[m]

vxj (x̃j)

The latter equality follows from the fact that for all j /∈ S : vxj (x̃j) = 0, by

definition.

Theorem 4.3.9 (Set-Subadditive ⊆ Hm-XOS). If a valuation is set-monotone and

set-subadditive then it is Hm-XOS, where Hm is the m-th harmonic number.

Proof. This proof is the generalization of the analogous proof for the case of

valuations defined on sets, presented in [8].

We will show that there exists a set of additive valuations L such that:

max
ℓ∈L

∑
j

vℓj(xj) ≤ v(x) ≤ Hmmax
ℓ∈L

∑
j

vℓj(xj)
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Each additive valuation in L will be associated with an outcome x ∈ X . We de-

fine the additive valuation associated with outcome x using the iterative process

presented in Algorithm 2.

ALGORITHM 2: Procedure for computing the additive valuation associated with
each outcome x ∈ X .

Input : An outcome x ∈ X and a valuation v : X → R
Output: Monotone valuations vxj : Xj → R for each j ∈ [m]

1 Set C = ∅;
2 while C ̸= [m] do

Pick A = argminA′⊆[m]
v(xA′ )
|A′−C| ;

for each j ∈ A− C do

vxj (x̃j) =

{
v(xA)

|A−C|Hm
if x̃ = xj

0 o.w.
(4.11)

C = C ∪A;

First we argue that for each x, x̃ ∈ X : v(x̃) ≥
∑

j v
x
j (x̃j). Let S = {j ∈

[m] : x̃j = xj}. By the set-monotonicity of the valuation we have: v(x̃) ≥ v(xS).

Hence, it suffices to show that:

v(xS) ≥
∑
j

vxj (x̃j) =
∑
j∈S

vxj (x̃j)

Consider the iteration t of Algorithm 2 at which the k-th element of S is added

in C. Since at that iteration the algorithm chose At we have:

vxk(x̃j) =
v(xAt)

|At − C|Hm

≤ v(xS)

(|S| − k + 1)Hm

Therefore: ∑
j∈S

vxj (x̃j) =

|S|∑
k=1

vxk(x̃j) ≤
v(xS)

Hm

|S|∑
k=1

1

|S| − k + 1
= v(xS)

Hence, for all x̃ ∈ X : v(x̃) ≥ maxx∈X
∑

j v
x
j (x̃j).

Now we show that for all x̃ ∈ X : v(x̃) ≤ Hmmaxx∈X
∑

j v
x
j (x̃j). Sup-

pose that the algorithm takes T iterations to complete the computation and that
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A1, . . . , AT are the sets picked at each iteration. Then:

max
x∈X

∑
j

vxj (x̃j) ≥
∑
j

vx̃j (x̃j) =
T∑
t=1

∑
j∈At

vx̃j (x̃j)

=
T∑
t=1

v(x̃At)

Hm

≥
v(x̃∪T

t=1At
)

Hm

=
v(x̃)

Hm

4.3.3 Partially Ordered Allocation Spaces

In many settings, such as position auctions or combinatorial auctions or band-

width allocation mechanisms, smoothness of a mechanism holds only when

the valuations come from some restricted class of functions that do not con-

tain single-minded valuations, i.e. only for monotone valuations in the position

or only for concave valuations on allocated bandwidth.

For such applications, we want to understand the expressiveness of XOS-C

valuations, when C doesn’t contain single-minded valuations, but doesn’t con-

tain some general class of functions. In this section we will focus on the case

where the valuation restriction Cj corresponding to each mechanism, contains

only functions that are monotone with respect to some partial order on the allo-

cation space X j .

EXAMPLE 4.3.1. (Position Auctions with Monotone Valuations) Suppose that

each mechanism Mj is a position auction, i.e. it allocates a set of positions

{1, . . . , k} to the players, i.e. X j
i = {1, . . . , k}, such that no two players get the

same position. Such mechanism design settings find application in online ad-

vertisement auction settings, where the positions correspond to advertisement
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slots presented together with the organic results of a search query. In such set-

tings it makes sense to assume that a slot that appears higher in the web-page

can only imply a higher value for the advertiser. In this case the allocation space

is completely ordered and the valuation of a player is monotone non-decreasing

in the position. As we will see in Chapter 11 some natural position auctions are

smooth only under such a monotonicity assumption on the allowable valua-

tions.

EXAMPLE 4.3.2. (Combinatorial Auctions with Monotone Valuations) Suppose

that each mechanism Mj is a combinatorial auction, i.e. it partitions a set of

items {1, . . . , k} to the players, i.e. X j
i = 2[k]. In that case, the allocation space has

a natural partial order defined by the subset relation, i.e. an allocation S ∈ X j
i

is smaller than T ∈ X j
i if and only if S ⊆ T . For such settings, it is reasonable

to assume that the local valuations of the players will satisfy free-disposal, i.e.

more items cannot decrease my valuation. In fact, as we will see in Chapter 12

many mechanisms for combinatorial auctions are smooth only under such an

assumption.

Here we will assume that the allocation space X j
i of each mechanism admits

some generic partial order ≽j and we will show a stronger equivalence between

fractionally subadditive valuations and XOS valuation, subject to monotonicity

constraints with respect to this partial order.

Definition 4.3.10 (Monotone). Consider a partial order ≽j of each allocation space

Xj which defines a poset (Xj,≽j). The coordinate-wise partial order ≽ of the product

space X = X1 × . . .× Xm is the coordinate-wise ordering. A valuation v : X → R+ is

monotone if and only if: x ≽ x̃ =⇒ v(x) ≥ v(x̃).

Theorem 4.3.11. A valuation v : X → R+ is monotone with respect to a coordinate-
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wise partial order ≽ and β-fractionally subadditive if and only if it is β-XOS-C, where

Cj contains all valuations vj : Xj → R+ that are monotone with respect to ≽j .

Proof. The if direction is easy to see, since as we showed in Theorem 4.3.3 if a

function is β-XOS-C for any C, then it is β-fractionally subadditive. Then mono-

tonicity of the valuation follows from the monotonicity of the local valuations

vℓj .

For the other direction, consider a valuation v that is β-fractionally subaddi-

tive across mechanisms and monotone with respect to the coordinate-wise order-

ing (≽j)j∈[m]. We will prove that it is also β-XOS across mechanisms and such

that each induced valuation vℓj : Xj → R+, used in the XOS representation, is

monotone with respect to ≽j .

Consider the following variation of the linear program (4.7) used in the proof

of Theorem 4.3.3 associated with an outcome x∗ ∈ X :

V (x∗) = min
ax

∑
x∈X

axv(x)

s.t.
∑

x:xj≽jx∗
j

ax ≥ 1 for all j ∈ [m]

ax ≥ 0 for all x ∈ X

Observe that in this variation the first set of constraints is altered to include a

summation over outcomes greater than or equal to x∗
j and not only on outcomes

equal to x∗
j as in LP (4.3.3).

Consider a feasible solution ax to the above linear program. For x ∈ X , let

S(x) = {j ∈ [m] : xj ≽ x∗
j}. By the monotonicity of the valuation we know that:∑

x∈X

axv(x) ≥
∑
x∈X

axv(x
∗
S(x), x−S(x)) =

∑
x∈X

ãxv(x)
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where, it is easy to see that:

∑
x:xj=x∗

j

ãx =
∑

x:xj≽ijx∗
j

ax ≥ 1

where the last inequality follows from the constraints of the linear program.

Therefore ãx is a fractional cover of x∗. Hence, by the property of β-

fractionally subaddtive valuations we know that

β
∑
x∈X

axv(x
∗
S(x), x−S(x)) ≥ v(x∗)

Since, this holds for any feasible ax we get that βV (x∗) ≥ v(x∗). In addition we

know that we can achieve v(x∗) by just setting ax∗ = 1 and ax = 0 for any other

x ∈ X . Hence, V (x∗) ≤ v(x∗) ≤ βV (x∗).

Now consider the dual of the above linear program:

C(x∗) = max
tj

∑
j∈[m]

tj

s.t.
∑

j:xj≽jx∗
j

tj ≤ v(x) for all x ∈ X

tj ≥ 0 for all j ∈ [m]

By LP duality we know that V (x∗) = C(x∗). Let tx∗
j be an optimal solution to

the dual associated with allocation x∗.

Now consider the following induced valuations: vx∗
j (xj) = tj if xj ≽j x

∗
j and

0 otherwise. By the constraints of the dual we know that v(x) ≥
∑

j:xj≽jx∗
j
tj =∑

j∈[m] v
x∗
j (xj). Therefore:

v(x) ≥ max
x∗∈X

∑
j∈[m]

vx
∗

j (xj)
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In addition by LP duality we know:

max
x∗∈X

∑
j∈[m]

vx
∗

j (xj) ≥
∑
j∈[m]

vxj (xj) =
∑
j∈[m]

txj = C(x) = V (x) ≥ 1

β
v(x)

Therefore we get that:

max
x∗∈X

∑
j∈[m]

vx
∗

j (xj) ≤ v(x) ≤ βmax
x∗∈X

∑
j∈[m]

vx
∗

j (xj)

Hence, the valuation is also β-XOS.

To complete the theorem we just need to prove that the valuations vxj (·) are

monotone under the partial order ≽j , for each x ∈ X and for each j ∈ [m].

Observe that vxj (·) takes the same value (namely txj ) for all x̃j ≽j xj and is 0 for

any other x̃j .

Consider two outcomes x̃j, x̂j ∈ Xj , such that x̃j ≽j x̂j . If x̂j ≽j xj then

by transitivity of ≽j we also have that x̃j ≽j xj and therefore vxj (x̃j) = vxj (x̂j).

Otherwise, by definition we have vxj (x̂j) = 0 and therefore trivially vxj (x̃j) ≥

vxj (x̂j).

REMARK 4.3.3. In particular in the proof of Theorem 4.3.11 we show that every

monotone β-fractionally subadditive valuation can be expressed using induced

valuations that are step valuations: vj,ℓ(xj) = c if xj ≽j x̂j and 0 otherwise.

Corollary 4.3.12. A valuation v : X → R+ is monotone with respect to a coordinate-

wise partial order ≽ and β-fractionally subadditive if and only if it is β-XOS-C, where

Cj contains all step valuations with respect to ≽j .

In the case where the allocation space Xj is the power set of a set of items,

i.e. a combinatorial auction setting, then a step valuation function corresponds

to a single-minded bidder, where the value function f : 2[m] → R+ takes the form:
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f(S) = c if S ⊇ T and 0 otherwise and T is referred to as the players interest set.

REMARK 4.3.4. Combining the main theorem of this section with the simultane-

ous composability Theorem 4.2.2, we get the following composability corollary

for smooth mechanisms:

Corollary 4.3.13. Consider the simultaneous composition of m (λ, µ)-smooth mecha-

nisms, such that for each j ∈ [m], Vj
i contains all step valuations with respect to some

partial order ≽j
i . Then the composition is a

(
λ
β
, µ
)

-smooth mechanism, when players

have β-fractionally subadditive valuations across mechanisms that are monotone with

respect to the coordinate-wise order ≽i.

4.3.4 Lattice Allocation Spaces

If each partially ordered set (Xj,≽j) forms a lattice2 then it is natural to consider

valuations that have diminishing marginal returns over this lattice: i.e. for any

z ≽ y and t ∈ X

v(t ∨ y)− v(y) ≥ v(t ∨ z)− v(z)

If the lattice is distributive and the valuation is monotone then the above class

of valuations is equivalent to the class of submodular valuations over the lattice as

we show below.
2A partially ordered space X forms a lattice if any two elements x, x′ ∈ X have is a least

upper bound y = x ∨ x′, referred to as the join or supremum (i.e. y ≽ x and y ≽ x′ and for
any y′ satisfying the latter conditions, y′ ≽ y and any two elements have a greatest lower bound
y = x∧ x′, referred to as the meet or the infimum (i.e. x ≽ y and x′ ≽ y and for any y′ satisfying
this inequalities, y ≽ y′).
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Definition 4.3.14 (Lattice-Submodular). If each poset (Xj,≽j) forms a lattice then a

valuation is lattice-submodular if and only if it is submodular on the product lattice of

outcomes:

∀x, x̃ ∈ X : v(x ∨ x̃) + v(x ∧ x̃) ≤ v(x) + v(x̃) (4.12)

Lemma 4.3.15. If a valuation satisfies the diminishing marginal property with respect

to a lattice structure then it is also lattice-submodular. If the lattice is distributive and

the valuation is monotone then the inverse also holds.

Proof. Consider two outcomes x, x̃ ∈ X . Since x̃ ≽ x ∧ x̃, by the diminishing

marginal returns property we have:

v(x ∨ x̃)− v(x̃) ≤ v(x ∨ (x ∧ x̃))− v(x ∧ x̃)

= v(x)− v(x ∧ x̃)

By rearranging we get that:

v(x ∨ x̃) + v(x ∧ x̃) ≤ v(x) + v(x̃)

Since, x, x̃ where arbitrary the latter holds for any pair and therefore the valua-

tion is submodular across mechanisms.

Now consider a valuation that is monotone and submodular over outcomes

and in addition the lattice (X ,≽) is distributive. We will show that for any

z ≽ y and for any t ∈ X the diminishing marginal property holds. Invoke the

submodular property for x = t ∨ y and x̃ = z:

v((t ∨ y) ∨ z) + v((t ∨ y) ∧ z) ≤ v(t ∨ y) + v(z)

Since z ≽ y we have t ∨ y ∨ z = t ∨ z. In addition, by distributivity of the lattice:

(t ∨ y) ∧ z = (t ∧ z) ∨ (y ∧ z) = (t ∧ z) ∨ y. Thus:

v(t ∨ z) + v((t ∧ z) ∨ y) ≤ v(t ∨ y) + v(z)
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Now by monotonicity of the valuation we know that

v((t ∧ z) ∨ y) ≥ v(y)

Thus we get:

v(t ∨ z) + v(y) ≤ v(t ∨ z) + v((t ∧ z) ∨ y) ≤ v(t ∨ y) + v(z)

By rearranging we get the diminishing marginal property:

v(t ∨ z)− v(z) ≤ v(t ∨ y) + v(y)

Below we give two examples of lattice submodular valuations that find nat-

ural applications in mechanism design settings.

EXAMPLE 4.3.3. (Bandwidth Allocation with Concave Valuations) Suppose that

each mechanism Mj is a bandwidth allocation mechanism, i.e. it’s goal is to

split a bandwidth capacity C across the players. Thus the allocation space of

each player is any portion between 0 and C, i.e. X j
i = [0, C]. This space is

completely ordered (and thereby distributive) lattice and the class of diminish-

ing marginal valuations corresponds to any concave function f : [0, C] → R+.

In bandwidth allocation settings it is normally assumed that the valuation of a

player is concave and mechanisms for the bandwidth allocation setting, such as

Kelly’s proportional bandwidth allocation mechanism are smooth only under

the concavity assumption (see Chapter 13).

EXAMPLE 4.3.4. (Combinatorial Auctions with Submodular Valuations) Sup-

pose that each mechanism is a combinatorial auction setting, described in Ex-

ample 4.3.2. The combinatorial allocation space X j
i = 2[k] is a lattice and in fact
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it is usually referred to as the binary lattice, where the join of two allocations is

their union and the meet is their intersection. This lattice is also distributive. In

many situations it makes sense to assume that even locally within each mech-

anism the players have no-complements across items and that their valuations

are locally submodular over the items of the mechanism. In fact several mecha-

nisms, that could be used as local mechanisms, are smooth, for reasonable λ and

µ, only for complement-free valuations (e.g. simultaneous first-price auctions).

Under such structural assumptions on the allocation space, we can show

a stronger connection between lattice submodular valuations and XOS valua-

tions.

Theorem 4.3.16. If a valuation is monotone and satisfies the diminishing marginal

returns property with respect to a distributive product lattice (X ,≽) then it can be ex-

pressed as an XOS valuation using valuations vℓj : Xj → R+ that are capped marginal

valuations:

vℓj(xj) = v(xj ∧ x̂j, x̂−j)− v(⊥j, x̂−j)

(for some x̂ ∈ X associated with each ℓ) and satisfy the diminishing marginal returns

property with respect to (Xj,≽j).

Proof. Suppose that each (Xj,≽j) forms a lattice and the valuation v : X → R+ is

monotone and satisfies the diminishing marginal returns property with respect

to the product lattice. We will modify the definition of vxj (x̃j) used in Theorem

4.3.8 as follows:

vxj (x̃j) = v(x̃j ∧ xj, xMj−1
,⊥−Mj

)− v(xMj−1
) (4.13)

We first show that the set of additive valuations satisfy the XOS definition. Fix
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two outcomes x, x̃ ∈ X and let x̂ = x̃ ∧ x. By the monotonicity of the valuations

we have that:

v(x̃) ≥ v(x̂) (4.14)

Now by the diminishing marginal returns property of the function over the

product lattice and the fact that for all j, x̂j ≽j xj we have:

v(x̃) ≥ v(x̂) =
∑
j

v(x̂j, x̂Mj−1
,⊥−Mj

)− v(x̂Mj−1
)

≥
∑
j

v(x̂j, xMj−1
,⊥−Mj

)− v(xMj−1
) =

∑
j

vxj (x̃j)

Now we show that each vxj (·) satisfies the diminishing marginal returns with

respect to the lattice (Xj ≽j). Observe that the negative part in the definition of

vxj (x̃j) is independent of x̃j . Thus it suffices to show that the first part satisfies

the diminishing marginal returns. For that it suffices to show that the following

function:

vj(x̃j) = v(x̃j ∧ xj, x−j) (4.15)

satisfies the diminishing marginal returns as a function of x̃j for any x ∈ X ,

whenever v(·) satisfies the diminishing marginal returns with respect to the

product lattice. Since, we assumed that the valuation is monotone and the lat-

tices are distributive we will equivalently show that vj(·) is lattice-submodular

whenever v(·) is:

vj(yj ∧ zj) + vj(yj ∨ zj) =

v(yj ∧ zj ∧ xj, x−j) + v((yj ∨ zj) ∧ xj, x−j) =

v((yj ∧ xj) ∧ (zj ∧ xj), x−j) + v((yj ∧ xj) ∨ (zj ∧ xj), x−j) ≥

v(yj ∧ xj, x−j) + v(zj ∧ xj, x−j) =

vj(yj) + vj(zj)
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Where the second equality follows from the distributivity of the lattice and the

inequality follows from the submodularity of v(·).

REMARK 4.3.5. Combining the main theorem of this section with the simultane-

ous composability Theorem 4.2.2, we get the following composability corollary

for smooth mechanisms:

Corollary 4.3.17. Consider the simultaneous composition of m (λ, µ)-smooth mech-

anisms, such that each for each j ∈ [m], X j
i forms a lattice. If each player i has a

monotone submodular valuation vi : Xi → R+ on the product lattice and for each

j ∈ [m] capped marginals of vi belong to Vj
i , then the composition is a

(
λ
β
, µ
)

-smooth

mechanism.

4.4 Example: Simultaneous First Price Auctions

One important special case of the results in this chapter is when each individual

mechanism is a single-item auction. Several papers, both in the economics and

computer science literature, have analyzed the efficiency of the game defined

by simultaneous single-item auctions.

Brief overview of literature. In economics, Engelbrecht-Wiggans and Weber

[22], were the first to analyze a game of simultaneous second-price auctions with

unit-demand bidders in the complete information setting, where every bidder

has a value of one for getting any of the items. They showed that if each bidder
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is restricted to bid in only one of the auctions, then there exists a symmetric

mixed Nash equilibrium where the social welfare is only a 1 − 1
e

fraction of

the optimal social welfare, i.e. the price of anarchy of mixed Nash equilibria

is at least e
e−1

. More recently, Bikhchandani [9], analyzed simultaneous first

price auctions with more general valuations and where players can bid on more

than one auction and showed that in the complete information setting, every

pure Nash equilibrium (if it exists) must be fully efficient and correspond to a

Walrasian equilibrium.

In computer science, Christodoulou et al. [15] first analyzed the efficiency

of Bayes-Nash equilibria of simultaneous second-price auctions. They showed

that when players have XOS valuations drawn independently from aribtrary

distributions, then every Bayes-Nash equilibrium (assuming that player’s don’t

bid above their valuations) has expected welfare at least half of the expected

optimal welfare, i.e. the Bayes-Nash price of anarchy is at most 2. The result

was later extended to 2 · β for β-XOS valuations by [8], implying a O(log(n))

bound for subadditive valuations. The result was improved to 4 by Feldman et

al. [25]. For first-price auctions Hassidim et al. [36] gave a bound of 4 on the

Bayes-Nash price of anarchy for the case of XOS valuations and Feldman et al.

[25] a bound of 2 for subadditive valuations.

Smoothness analysis. Following our running Example 3.1.1, in this section

we will analyze the case when each auction is a first price auction (c.f. Chapter

10 for other auction formats).

From Lemma 3.1.3 we know that the first price auction is a
(
1− 1

e
, 1
)
-smooth

mechanism. Thus theorem 4.2.2 directly implies that the mechanism defined by
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running m first price auctions simultaneously is also a
(
1− 1

e
, 1
)
-smooth mech-

anism, when players have XOS (or equivalently fractionally subadditive) val-

uations over the items. Thus the price of anarchy of the game is at most e
e−1

and this holds even at no-regret learning outcomes and even under incomplete

information, i.e. at every Bayes coarse correlated equilibrium.

Composability proof unraveled. To demystify the above result, we break

apart the composability proof for the special case of simultaneous first price

auctions with unit-demand bidders. We describe the smoothness deviations

that the composability proof of Theorem 4.2.2 constructs and which are the cer-

tificates that the game is approximately efficient.

More formally, in this expository example, we will consider the case where

each player i ∈ [n] has a value wij for item j ∈ [m]. Each player is unit-demand,

i.e. wants only one item, and if he wins more than one item then his valuation

is the highest value item he won:

vi(S) = max
j∈S

wij (4.16)

This is a special case of an XOS valuation: for each item j∗ ∈ [m], there is one

additively separable valuation vj
∗

i in the index set L, and vj,j
∗

i (xj) = wij∗ · 1{j =

j∗} · xj , with xj ∈ {0, 1}. Then observe that vi(x) = maxj∗∈L
∑

j∈[m] v
j,j∗

i (xj).

The composability proof constructs the smoothness deviation for the global

mechanism as follows: for each valuation profile v, consider the optimal allo-

cation x∗(v). In the case of unit-demand bidders, the optimal allocation will

be a matching. Thus each player is allocated an item j∗(i). Then consider the

additively separable valuation that matches a player’s value for his optimal al-

location. In this case it will trivially be v
j∗(i)
i . Now consider the valuation profile
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where each player’s true valuation is replaced with the latter additively separa-

ble valuation. Denote this profile v∗ = (v∗1, . . . , v
∗
n).

Observe that under this profile, at each item j ∈ [m], only one player i has

non-zero value, and this is exactly the player that is matched to that item in the

optimal matching allocation. Moreover, his value is wij . Therefore, he is locally

the optimal player for that item under this new valuation profile.

The global deviation asks from each player i, to submit his local smoothness

deviation at each item j ∈ [m], under valuation profile vj,∗ = (v
j,j∗(1)
1 , . . . , v

j,j∗(n)
n ).

This means submitting a zero bid at every item j ̸= j∗(i) and submitting a ran-

dom bid with density function f(x) = 1
wi,j∗(i)−x

and support [0, (1 − 1/e)wi,j∗(i)]

at item j∗(i).

Observe that by local smoothness of each first price auction we have that

the utility of each player i from his optimal item j∗(i) under this deviation is

at least:
(
1− 1

e

)
wi,j∗(i) − RMj∗(i)(bj

∗(i)). The global smoothness then follows

by summing over all players and observing that
∑

i∈[n] wi,j∗(i) = OPT(v) and∑
iRMj∗(i)(bj

∗(i)) = RM(b), since j∗(·) is a matching.

4.5 Composability under Restricted Complements

In many scenarios, the value of a player might exhibit some limited complemen-

tarities across allocations from different mechanisms. For instance, if each mech-

anism is a combinatorial auction then maybe two items (left and right shoe) that

have value for the player only when acquired in conjunction, might be sold by

two different mechanisms. Our complement-free assumption that is implicit in
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the definition of XOS valuations does not allow for such complementary rela-

tions.

However, in many practical scenarios, such as spectrum auctions, bidders

valuations do exhibit complements, albeit restricted ones. Hence, it is natural

to ask how does the efficiency of a market composed of smooth mechanisms

degrades in the presence of complements.

We introduce a measure of the size of a complement and show an approx-

imate composability theorem that will yield efficiency results even in the pres-

ence of complements. Intuitively, if the measure of complementarity is k, then

it means that the type of “conjunctive” complementary relations can occur only

across k-tuples of mechanisms. Thus in the case of a left and a right shoe, the

measure is two. For easier understanding of our complementarity measure, we

first describe it in the context of simultaneous single-item auctions, where the

value of a player is a set function. We then give the generalized definition of the

measure for general mechanisms.

4.5.1 Maximum over Positive Hypergraph Set Functions

Given a set M of m items, consider a set function v : 2M → R+ that is normalized,

i.e. v(∅) = 0 and monotone, i.e. v(T ) ≥ v(S) whenever S ⊆ T ⊆ M . A hyper-

graph representation of a set function v : 2M → R+ is a (normalized but not

necessarily monotone) set function h : 2M → R that satisfies v(S) =
∑

T⊆S h(T ).

It is easy to verify that any set function v admits a unique hypergraph represen-

tation and vice versa. A set S such that h(S) ̸= 0 is referred to as a hyperedge of h.

Pictorially, the hypergraph representation can be thought of as a weighted hy-
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pergraph, where every vertex is associated with an item in M , and the weight of

each hyperedge e ⊆ M is h(e). Then the value of the function for any set S ⊆ M ,

is the total value of all hyperedges that are contained in S.

The rank of a hypergraph representation h is the largest cardinality of any

hyperedge. Similarly, the positive rank (respectively, negative rank) of h is the

largest cardinality of any hyperedge with strictly positive (respectively, nega-

tive) value. The rank of a set function v is the rank of its corresponding hyper-

graph representation, and we refer to a function v with rank r as a hypergraph-r

function. Last, if the hypegraph representation is non-negative, i.e. for any

S ⊆ M , h(S) ≥ 0, then we refer to such a function as a positive hypergraph-r

(PH-r) function .

We define a parameterized hierarchy of set functions, with a parameter that

corresponds to the degree of complementarity.

Definition 4.5.1 (Maximum Over Positive Hypergraph-k (MPH-k) class). A

monotone set function v : 2M → R+ is Maximum over Positive Hypergraph-k

(MPH-k) if it can be expressed as a maximum over a set of PH-k functions. That is,

there exist PH-k functions {vℓ}ℓ∈L such that for every set S ⊆ M ,

v(S) = maxℓ∈L vℓ(S), (4.17)

where L is an arbitrary index set.

The MPH hierarchy is a complete one and thereby the lowest level of the

hierarchy that a function belongs to is a valid measure of complementarity for

any set function. The two extreme cases of MPH-k functions coincide with two

important classes of valuations. Specifically, MPH-1 is the class of functions

that can be expressed as the maximum over a set of additive functions. This is
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Figure 4.1: The left figure depicts a spectrum auction inspired hypergraph
valuation with positive edges and negative hyperedges, which
can be expressed as the maximum over the positive graphical
valuations on the right.

exactly the class of XOS valuations [45] analyzed in the complement-free valu-

ation section. On the other side, MPH-m coincides with the class of all mono-

tone functions,3 and so the hierarchy is complete. For intermediate values of k,

MPH-k is monotone; namely, for every k < k′ it holds that MPH-k ⊂ MPH-k′.

We get the following hierarchy:

Submodular ⊂ XOS = MPH-1 ⊂ · · · ⊂ MPH-m = Monotone (4.18)

A simple example. Consider the example depicted in Figure 4.5.1, which has

an intuitive interpretation in the context of FCC spectrum auctions. Suppose

that A, B are two spectrum bands and that Ai, Bi are auctions representing band

A or B at location i. Locations 1 and 2 are neighboring geographic regions and

therefore, a bidder gets a much larger value for getting the same band in both

regions. Therefore, A1 and A2 have a complementary relationship and similarly

B1 and B2. However, each Ai has a substitute relationship with Bi and addition-

ally the pair (A1, A2) has a substitute relationship with the pair (B1, B2), since

a bidder will only utilize one pair of bands. This valuation can be represented
3Simply create a separate PH-|S| function for each set S with a single hyperedge equal to the

set S and with weight f(S). Then, by monotonicity, the maximum of these functions is equal to
the initial valuation.
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as a hypergraph, as in the left-most diagram in Figure 4.5.1. Also, as illustrated

in Figure 4.5.1, this valuation can be represented as a maximum over positive

hypergraph valuations of rank 2.

Fractionally “Subadditive” Characterization of MPH-k. We show that the

definition of MPH-k functions has a natural analogue as an extension of frac-

tionally subadditive functions. More formally, consider a set S of items and let

S|k be all the subsets of S of size at most k. We say that a collection of sets

T ⊆ 2S together with a weight aT for each T ∈ T is a fractional cover of all the

subsets of size at most k (k-fractional cover) of S if ∀s ∈ S|k :
∑

T∈T :T⊇s aT ≥ 1.

A valuation v : 2M → R+ is k-fractionally subadditive if for every S ⊆ M and

every k-fractional cover (aT , T ) of S, we have v(S) ≤
∑

T∈T aT · v(T ).

Theorem 4.5.2. The class of monotone k-fractionally subadditive valuations is equiv-

alent to the class of MPH-k valuations.

Proof. First it is easy to observe that any MPH-k valuation is k-fractionally sub-

additive:

∑
T∈T

aT · v(T ) =
∑
T∈T

aT ·max
ℓ∈L

∑
s∈T |k

wℓ
s ≥ max

ℓ∈L

∑
T∈T

aT
∑
s∈T |k

wℓ
s

= max
ℓ∈L

∑
s∈S|k

wℓ
s

∑
T∈T :T⊇s

aT ≥ max
ℓ∈L

∑
s∈S|k

wℓ
s = v(S)

To show that any monotone k-fractionally subadditive valuation is an MPH-

k valuation, we follow a similar analysis to that carried by Feige [23], as follows.

For every set S, we construct a hypergraph-k valuation associated with the set

S, and denote it by ℓ(S). The set of valuations is then L = ∪S⊆[m]ℓ(S). The

hypergraph valuation ℓ(S) is constructed such that: (i) v(S) =
∑

s∈S|k w
ℓ(S)
s , and
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(ii) for any subset T ⊆ S : v(T ) ≥
∑

s∈T |k w
ℓ(S)
s . Monotonicity then implies that

for any set S, v(S) = maxℓ∈L
∑

s∈S|k w
ℓ
s, as desired.

It remains to construct the valuation ℓ(S). To this end, we consider the fol-

lowing linear program and its dual:

V (S) = min
(aT )T⊆S

∑
T⊆S

aT · v(T ) C(S) = max
(ws)s∈S|k

∑
s∈S|k

ws

∀s ∈ S|k :
∑
T⊇s

aT ≥ 1 ∀T ⊆ S :
∑
s∈T |k

ws ≤ v(T )

∀T ⊆ S : aT ≥ 0 ∀s ∈ S|k : ws ≥ 0

By definition, every feasible solution to the primal program constitutes a frac-

tional cover of every subset of size at most k of S. Therefore, it follows by k-

fractional subadditivity that V (S) ≥ v(S). Since v(S) can be obtained by setting

aS = 1 and aT = 0 for any T ⊂ S, we get that V (S) = v(S). Duality then implies

that C(S) = v(S). Thus if we set (wℓ(S)
s )s∈S|k to be the solution to the dual, then

the conditions that need to be hold for ℓ(S) are satisfied by the constraints of the

dual and the duality.

4.5.2 Restricted Complements across Mechanisms

To present our composability theorem in the general mechanism composition

setting, we first generalize the class of MPH-k set functions to valuations across

mechanisms.

Definition 4.5.3 (Positive Hypergraph-k across mechanisms). A valuation v :

X1 × . . . × Xm → R+ is positive hypergraph-k across mechanisms if for any x ∈
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X1 × . . .×Xm

v(x) =
∑
e∈E

ve(xe) (4.19)

where E ⊆ {S ⊆ M : |S| ≤ k}, xe = (xj)j∈e is the vector of allocations on the

mechanisms in the set e and for all e ∈ E, ve(xe) ≥ 0.

The latter class is the generalization of positive hypergraph-k set functions

(see Abraham et al [1]). The above class of valuations allows exactly k-wise

complementary relations across mechanisms. However, it does not allow for

arbitrary substitute relations, i.e. it does not even include XOS valuations across

mechanisms. To achieve this we define the more general class of maximum over

positive hypergraph-k valuations across mechanisms.

Definition 4.5.4 (Maximum over Positive Hypergraph-k across mechanisms). A

valuation v : X1 × . . . × Xm → R+ is MPH-k across mechanisms if there exists a set

L of positive hypregraph-k valuations, such that for any x ∈ X1 × . . .×Xm

v(x) = sup
ℓ∈L

vℓ(x) (4.20)

We conclude the section with an example of a valuation with restricted com-

plements across mechanisms, which is not a set function example. The example

is motivated by “impression effects” that can arise in online advertisement auc-

tions.

EXAMPLE 4.5.1. (Position Auctions with Impression Effects) For many search

queries in Google or Bing, there are more than one group of advertisement slots

that are auctioned to advertisers. Typically, there will be a small set of top slots

that are presented above the organic search results and another group of side

slots that are presented to the right of the organic search results. Though the
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exact mechanism that takes place to allocate these slots is rather complicated,

one can approximate it by the abstraction that each group of slots is auctioned

via a separate position auction, such as the generalized second price auction (i.e.

advertisers submit a separate bid for the top slots and a separate bid for the side

slots). Thus we can view it as a composition of two position mechanisms.

In such a setting an advertiser might have an extra “impression” value for

winning an the top slot in both groups, as this will create an impression effect

to the web user. Thus the value of the advertiser if he is allocated slot j among

the top slots and slot j′ among the side slots could look like:

vi(j, j
′) = aj · wc

i + ãj′ · wc
i + wim

i · 1{j = j′ = 1},

where aj is the click probability of top slot j, ãj′ is the click probability of side

slot j′, wc
i is the per-click value of the advertiser and wim

i is the value for the

impression effect.

Observe that this valuation is an MPH-2 valuation across mechanisms.

Moreover, we can take an even more global view and consider all the position

auctions that the player participates in the platform (e.g. other ad campaigns or

other keywords). Assuming that across different impressions the value of the

advertiser is monotone and fractionally subadditive (i.e. view the two position

auctions of each impression as a single mechanism and then consider the com-

position of the impression mechanisms, then the player’s value is monotone

and fractionally subadditive across mechanisms), then the whole valuation of

the advertiser still remains MPH-2 as the complementarities only appear across

the two auctions for the same impression.
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4.5.3 Composability Theorem with Complements

To prove composability under restricted complements we will need to assume

that the allocation space of each mechanism is partially ordered and that the

valuation space for which smoothness holds includes all step valuations with

respect to the partial order.

Then we show that if the valuation vi of each player is MPH-k and the value

functions ve,ℓi (xe
i ) used to express his valuation are monotone coordinate-wise

with respect to this partial order, then local (λ, µ)-smoothness of each mecha-

nism, implies global (1− k +min {λ, 1} · k, µ)-smoothness.

Theorem 4.5.5. Consider the simultaneous composition of m mechanisms each being

(λ, µ)-smooth for any step valuation with respect to some partial order of the alloca-

tion space. If players have MPH-k valuations across mechanisms such that ve,ℓi (·) are

monotone coordinate-wise with respect to each partial order, then the composition is

(1− k +min {λ, 1} · k, µ)-smooth

Proof. By Lemma 4.2.3 it suffices to show smoothness of the global mechanism

only for positive hypergraph-k valuation, i.e. for each player i we have:

vi(x) =
∑
e∈Ei

vei (x
e
i ), (4.21)

where Ei ⊆ {S ⊆ M : |S| ≤ k} and xe
i = (xj

i )j∈e. However, as compared to

the proof of Theorem 4.2.2, smoothness of the global mechanism for positive

hypergraph-k valuations is not as straightforward as the case of additively sep-

arable valuations, since the utility of a player doesn’t decompose. Hence, in the

remainder of the proof we prove the desired smoothness. To achieve this we

need to construct the special randomized actions a∗
i (v) required by the smooth-

ness property.
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Let x̃i = (x̃j
i )j∈[m] be the optimal allocation of each player i. Consider an

action profile a = (aj)j∈M on each auction j and each player deviating to some

strategy ãi =
(
ãji
)
j∈[m]

. Then we can obtain the following lower bound a player’s

utility from the deviation:

ui(ãi, a−i) =∑
e∈Ei

∑
xe
i

vei (x
e
i ) · Pr (Xe

i (ãi, a−i) = xe
i )−

∑
j∈M

P j
i (ã

j
i , a

j
−i) ≥

∑
e∈Ei

vei (x̃
e
i ) · Pr (Xe

i (ãi, a−i) ≽ x̃e
i )−

∑
j∈M

P j
i (ã

j
i , a

j
−i) ≥

∑
e∈Ei

vei (x̃
e
i ) ·

(
1−

∑
j∈e

(
1− Pr

(
Xj

i (ã
j
i , a

j
−i) ≽ x̃j

i

)))
−
∑
j∈M

P j
i (ã

j
i , a

j
−i) =

∑
e∈Ei

vei (x̃
e
i ) · (1− |e|) +

∑
e∈Ei

vei (x̃
e
i )
∑
j∈e

Pr
(
Xj

i (ã
j
i , a

j
−i) ≽ x̃j

i

)
−
∑
j∈M

P j
i (ã

j
i , a

j
−i) =

∑
e∈Ei

vei (x̃
e
i ) · (1− |e|) +

∑
j∈M

{(∑
e∋j

vei (x̃
e
i )

)
· Pr

(
Xj

i (ã
j
i , a

j
−i) ≽ x̃j

i

)
− P j

i (ã
j
i , a

j
−i)

}
.

Summing up over all players we observe that the second summand in the

above expression will correspond to deviating utilities of individual single-

item auctions, where each player unilaterally deviates to ãji and in which every

player has a valuation of
∑

e∋j v
e
i (x̃

e
i ) for getting any allocation xj

i ≽ x̃j
i and 0

otherwise. The latter is a step valuation and hence we can set the local deviat-

ing actions at each mechanism to the smoothness deviations for the latter step

valuation profiles and get:∑
i

ui(ãi, a−i) ≥
∑
i

∑
e∈Ei

vei (x̃
e
i )(1− |e|) + λ

∑
i

∑
e∈Ei

vei (x̃
e
i ) · |e| − µRM(a)

=
∑
i

∑
e∈Ei

vei (x̃
e
i ) · (1− (1− λ)|e|)− µRM(a)

If λ < 1 then we use the fact that |e| ≤ k to get the (1 − k + λk, µ)-smoothness

property, otherwise we can simply ignore the term (1 − λ)|e| and get the (1, µ)-

smoothness property

98



REMARK 4.5.1. We need to point out that the above theorem would lead to

meaningful price of anarchy bound only when λ > 1− 1
k
. Hence, each individ-

ual mechanism must be (λ, µ)-smooth for values of λ arbitrarily close to 1. For

instance, the (1− 1/e, 1)-smoothness property that we gave in Example 3.1.1 for

the first price auction is not sufficient to yield any reasonable efficiency guaran-

tee under complements.

However, for many mechanisms it is possible to show that the mechanism is

(λ, µ)-smooth for values of λ arbitrarily close to 1, at the expense of increasing

µ. This is, for instance, the case for the first price auction where as we will see

in the next section it is (β(1 − e−1/β), β)-smooth for any β ≥ 1. For appropriate

value of β, this would then lead to an O(k) price of anarchy bound for simul-

taneous auctions under k-wise complements. Similar approach will apply for

other auctions such as position auctions or greedy combinatorial auctions as we

will see in Part III.

4.6 Example: Simultaneous First Price Auctions with Comple-

ments

As an example, we first analyze the efficiency of simultaneous first price auc-

tions when players have MPH-k valuations over the items. In Section 4.4 we

showed that when players have XOS ≡ MPH-1 valuations then the price of

anarchy is at most e
e−1

. Here, we extend this result to show that for MPH-k

valuations the price of anarchy is O(k).

We first show a stronger smoothness property of the first price auction and
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then we will apply Theorem 4.5.5, to get an O(k) price of anarchy for maximum

over positive hypergraph-k valuations.

Lemma 4.6.1. The first price auction is a
(
β ·
(
1− e−1/β

)
, β
)
-smooth mechanism for

any β > 0.

Proof. Consider valuation profile v = (v1, . . . , vn). The highest value player

(wlog player 1) can deviate to submitting a randomized bid b∗
1 drawn from a

distribution with density function f(x) = β
v1−x

and support [0, (1 − e−1/β)v1],

while all non-highest value players should just deviate to bidding 0. No matter

what the rest of the players are bidding, the utility of the highest bidder from

the deviation is:

U FPA
1 (b∗

1, b−1; v1) ≥
∫ (1−e−1/β)v1

maxi̸=1 bi

(v1 − x)f(x)dx ≥ β
(
1− e−1/β

)
v1 − βmax

i
bi

= β
(
1− e−1/β

)
OPT(v)− β

∑
i∈[n]

Pi(b)

By applying Theorem 4.5.5, we get that the simultaneous first price auction

with MPH-k valuations is (1− (1− β · (1− e−1/β)) · k, β)-smooth for any β > 0.

For β = 1
log( k

k−1
)

we get the optimal price of anarchy bound of 1
1−(k−1) log( k

k−1
)
≤

k(2− e−k).

4.7 Example: Simultaneous Position Auctions

We now consider the setting of simultaneous position auctions with restricted

complement valuations. One such instance, was given in Example 4.5.1, where
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we allowed for the players to exhibit complementarities across the two auctions

that happen for the same impression and that corresponded to an impression

effect. Here we will assume that each position auction happens via the means

of a first-price pay-per-impression auction: each player submits a bid bi at each

position auction and the players are allocated positions in decreasing order of

their bids. If a player is allocated a slot then he pays his bid. We will examine

the efficiency of m simultaneous such auctions, when players have MPH-k val-

uations across mechanisms. In Chapter 11 we examine the efficiency of other

position mechanisms and give a more extensive analysis.

We first analyze the smoothness of the first-price pay-per-impression auc-

tion.

Lemma 4.7.1. The first-price pay-per-impression position auction is a (1 − 1
2β
, β)-

smooth mechanism for any β ≥ 1.

Proof. Consider a bid profile b and let j∗i be the optimal position of player i and

let π(j) be the player that gets slot j under bid profile b. Suppose that each

player deviates to bidding a random bid b′i, uniformly in [0,
vij∗

i

β
] and let f(t)

denote the density function of the random bid. If the random bid t of a player is

bπ(j∗i ) < t then player i wins his optimal slot or a higher slot and hence his value

is at least vij∗i by monotonicity of the valuation.

Thus a player’s utility from this deviation is at least:

ui(b
′
i, b−i) ≥

∫ vij∗
i

β

bπ(j∗
i
)

vij∗i f(t)dt−
vij∗i
2β

=

∫ vij∗
i

β

bπ(j∗
i
)

β · dt−
vij∗i
2β

=

(
1− 1

2β

)
vij∗i − β · bπ(j∗i )

Summing over all players we get the (1− 1
2β
, β)-smoothness property.
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Applying Theorem 4.5.5, we get that for any MPH-k valuation across po-

sition auctions the simultaneous position auction mechanism is (1 − k
2β
, β)-

smooth, yielding a price of anarchy bound of 2k for β = k. Thus for instance,

we get that for the valuations presented in Example 4.5.1 every equilibrium

achieves at least 1
4

of the optimal welfare.
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5

SEQUENTIAL COMPOSABILITY

...With the next issuance of the 10 year DSL, on March 9th, the Dutch Se-

quential Auction will therefore be applied for the first time. The DSTA plans

three auctionettes, according to the following time table:

1. from 10.00 to 10.15am bids can be submitted for the first auctionette; results

around 10.20am;

2. 10.30 to 10.45am bids can be submitted for the second auctionette; results around

10.50am;

3. 11.00 to 11.15am bids can be submitted for third and last auctionette; results

around 11.20am.

– Dutch State Treasure Agency, February 1999

In many real world scenarios, ranging from electronic markets like eBay to

auctions for art, mechanisms take place sequentially rather than simultaneously.

In this section we examine the efficiency of such sequential markets. Specifically,

we analyze a model where many mechanisms, in the generic sense, take place

one after the other.

The crucial difference with the simultaneous counterpart, analyzed in the

previous chapter, is that in sequential settings, players have the ability to re-

spond to deviations of their opponents. For this reason, the analysis of the pre-

vious section would break apart. Hence, we need new techniques to show that

global efficiency results from local smoothness of mechanisms. In this chapter
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we will show that smooth mechanisms, still compose well sequentially, but for

a more restricted class of valuations. As we will show this restriction is almost

necessary.

Informal Theorem 3. A market consisting of running m (λ, µ)-smooth mechanisms

sequentially achieves welfare at equilibrium at least λ
1+µ

of the optimal, if the value of a

player is unit-demand across mechanisms.

To prove our theorem we will first relax the smoothness condition to allow

the deviating strategies to depend on a player’s current action from which he is

deviating. This relaxed version of smoothness will allow us to capture efficiency

in sequential games where a good deviation might require to simulate a player’s

previous action until the “right moment” arrives.

Then we show that if a mechanism satisfies this relaxed notion of smooth-

ness then it has similar robust efficiency guarantees as a smooth mechanism,

with the exception that the guarantee extends to Bayes correlated rather than

coarse correlated equilibria.

Last we show that the global mechanism defined by running m (λ, µ)-

smooth mechanisms sequentially, is (λ, µ+1)-smooth under this relaxed notion

of smoothness.

5.1 Smoothness via Swap Deviations

Definition 5.1.1 (Smooth Mechanism via Swap Deviations). A mechanism M is

(λ, µ)-smooth via swap deviations if for any valuation profile v ∈ V , there exists a
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mapping a∗
i (v, ·) : Ai → ∆(Ai), such that for any action profile a ∈ A

∑
i∈[n]

UM
i (a∗

i (v, ai), a−i; vi) ≥ λOPT(v)− µ
∑
i∈[n]

Pi(a) (5.1)

Obviously if a mechanism is smooth then it is also smooth via swap de-

viations, hence properties that we prove about smooth mechanisms via swap

deviations automatically extend to any smooth mechanism.

If the mechanism is smooth via swap deviations then we show that the price

of anarchy of correlated (rather than coarse correlated) equilibria and hence van-

ishing swap regret sequences of play is small. The reason why the stronger

notion of a correlated equilibrium is needed is due to the fact that the swap

deviation used in the smoothness definition depends on the previous action of

the player. Hence, when considering whether the smoothness deviation is prof-

itable the player must condition on his previous action. The coarse correlated

equilibrium condition does not condition on the action of the player.

Theorem 5.1.2. If a mechanism is (λ, µ)-smooth via swap deviations then

CE-POA ≤ max{1, µ}
λ

.

PROOF SKETCH. The proof is identical to the proof of Theorem 3.1.2, with the

sole extra observation that if a is a correlated equilibrium then a player’s utility

is at least as high as his utility from any swap deviation.

Swap Deviations and Sequential Games. For smooth mechanisms via swap

deviations, we allow the deviating action a∗
i (v, ai) to depend both on the valu-

ation vector v and the current action of the deviating player i. This difference

causes our Theorem 5.1.2 to only hold for correlated equilibria and not coarse
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correlated equilibria. Allowing the deviating strategy to depend on ai makes it

possible to prove a composability theorem for sequential mechanisms. Such a

relaxation of the smoothness condition allows us to use deviating strategies in

the efficiency analysis, where the player follows his old strategy until the “right

moment” to deviate arrives. This way the intention of the player to deviate is

revealed to the other players only after the deviation and thereby the player is

facing a competition at the deviating moment that is identical to the one under

his old strategy.

More specifically, by simulating the equilibrium strategy, guarantees that

when some special item arrives the distribution of prices that the player faces

is equal to the equilibrium prices. Had he deviated from the equilibrium path,

then the other players might respond to this deviation and cause the prices on

a special item to rise much higher than equilibrium. Thereby, we wouldn’t be

able to charge these high prices to the payment of some equilibrium winner. In

order to simulate the equilibrium behavior (or his previous behavior) the player

needs to tailor his deviation to his current action.

The response of players to early deviations is exactly the reason why the

unit-demand assumption is needed, as we show in the example presented in

Section 5.3.1. For the case when some players are additive, an additive player

needs to deviate at many items to grab his optimal allocation. But a deviation

at an early item raises the future prices by a significant amount, rendering the

deviation unprofitable. However, these raised future prices do not correspond

to equilibrium prices and thereby cannot be charged to the payment of some

player at equilibrium. This leads to high inefficiency.
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5.1.1 Extension to Incomplete Information and Bluffing

We show that the swap deviation smoothness property leads to efficiency guar-

antees that are almost as robust as those of smooth mechanisms. Specifically, the

efficiency directly extends to Bayes correlated equilibria, but not Bayes coarse

correlated equilibria.

Theorem 5.1.3. If a mechanism M is (λ, µ)-smooth, then for any vector of indepen-

dent valuation distributions F = (F1, . . . ,Fn), every Bayes correlated equilibrium has

expected social welfare at least λ
max{1,µ} of the expected optimal social welfare, i.e.

BAYES-CE-POA ≤ max{1, µ}
λ

.

Proof. We will first show that for any strategy profile s ∈ Σ, there exists for each

player i, a randomized mapping s∗i (vi, si) ∈ ∆(Ai), such that:

∑
i∈[n]

Ev

[
UM
i (s∗i (vi, si), s−i(v−i);vi)

]
≥ λEw [OPT(w)]− µEv

[
RM(s(v))

]
(5.2)

Consider the following randomized deviation for each player i that depends

only on the information that he has which is his own value vi and the equilib-

rium strategies s(·): He random samples a valuation profile w ∼ ×iFi. Then he

plays s∗i (vi, si) = a∗
i ((vi,w−i), si(wi)), i.e., the player considers the current action

profile s(w), using the randomly sampled type (including the random sample

of his own type), and deviates from this action profile using the action given by

the smoothness property for his true type vi, the random sample of the types of

the others w−i, and the equilibrium action si(wi) of his randomly sampled type

wi. Using the action si(wi) as the base, is particularly meaningful in sequen-

tial mechanisms, where it corresponds to a bluffing technique, where player i

“pretends” that his valuation was wi until he deviates.
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The utility of the player under this deviation, in expectation over valuations,

can be lower bounded as follows:

Ev

[
UM
i (s∗i (vi, si), s−i(v−i);vi)

]
= Ev,w

[
UM
i (a∗

i ((vi,w−i), si(wi)), s−i(v−i);vi)
]

= Ev,w

[
UM
i (a∗

i ((wi,w−i), si(vi)), s−i(v−i);wi)
]

= Ev,w

[
UM
i (a∗

i (w, si(vi)), s−i(v−i);wi)
]
,

where the second equation is an exchange of variable names and regrouping

using independence. By summing over all players and using the smoothness

property:

∑
i∈[n]

Ev

[
UM
i (s∗i (vi, si), s−i(v−i);vi)

]
= Ev,w

∑
i∈[n]

UM
i (a∗

i (w, si(vi)), s−i(v−i);wi)


≥ Ev,w

[
λOPT(w)−RM(s(v))

]
which is the initially claimed property.

We now proceed to the final part of the theorem. Let s ∈ ∆(Σ), be a

BAYES-CE. Since no player i, wants to deviate to any mapping s∗i (·, ·) : Σi → Σi

in the support of the randomized mapping s∗i (·, ·), we get that:

EsEv

[
UM
i (s(v);vi)

]
≥ EsEv

[
UM
i (s∗i (vi, si), s−i(v−i);vi)

]
≥ λEw [OPT(w)]− µEsEv

[
RM(s(v))

]
By quasi-linearity of utility and using the fact that players have the possibility

to withdraw from the mechanism, we get the result, by standard manipulations

(see Theorem 3.1.2).
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5.2 Sequential Composability of Smooth Mechanisms

We consider a setting where m mechanisms take place sequentially in the pre-

defined alphabetical order. We will view the normal form representation of the

defined sequential game as another global mechanism. An interesting aspect of

the sequential composition is that the strategy of a player in the global mecha-

nism is no longer just an action aji ∈ Aj
i for each mechanism but rather a whole

contingency plan of what action she will submit to mechanism Mj conditional

on any observed history of play. Our result doesn’t depend on what part of the

history is observed by the players, whether players just observe their own allo-

cation, or all allocations, or also all prices, or bids. We don’t even need that all

players observe the same things.

We prove that if each mechanism Mj is (λ, µ)-smooth via swap deviations

(obviously also if it is simply smooth), then the global sequential mechanism is

(λ, µ + 1)-smooth via swap deviations, if an agent’s valuation is the best of her

allocations over the different mechanisms:

vi(xi) = max
j∈[m]

vji (x
j
i ) (5.3)

Theorem 5.2.1 (Sequential Composition). Consider a sequential composition of m

(λ, µ)-smooth mechanisms defined on valuation spaces Vj
i . If each valuation vi : Xi →

R+ is of the form vi(xi) = maxj∈[m] v
j
i (x

j
i ), with vji ∈ Vj

i , then the global mechanism

is (λ, µ + 1)-smooth, independent of the information released to players during the

sequential rounds.

Proof. Consider a valuation profile v and an action profile a of the sequential

composition. Remember that in the sequential composition ai is not a strategy

aji for each j but rather a whole contingency plan of what action aji (h
j
i ) to use at
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mechanism Mj , conditional on the observed history of play by player i up till

mechanism Mj .

Let x∗ be the optimal allocation for valuation profile v. As stated, we assume

that players have unit-demand valuations of the form:

vi(xi) = max
j∈[m]

vji (x
j
i )

where vji ∈ Vj
i . We will denote with j∗i = argmaxj∈[m] v

j
i (x

∗
ij), i.e. vi(x

∗
i ) =

v
j∗i
i (x∗

ij∗i
).

To prove the theorem we will give a randomized deviation a∗
i (v, ai) for each

agent i such that:

∑
i

UM
i (a∗

i (v, ai), a−i; vi) ≥ λOPT(v)− (1 + µ)RM(a)

Remember that this will be a randomization over contingency plans.

Consider the following type of randomized deviation a∗
i = a∗

i (v, ai) for

player i (the deviation will also be a contingency plan for each history of play):

he plays exactly as in ai until mechanism j = j∗i and then he plays some ran-

domized action a∗
ij that will be determined later on and will be related to the

smoothness of mechanism Mj . The utility of player i from this deviation is at

least:

UM
i (a∗

i (v, ai), a−i; vi) ≥ Ea∗
ij
[vji (X

j
i (a

∗
ij, a

j
−i(h

j
−i)))− P j

i (a
∗
ij, a

j
−i(h

j
−i))]−

∑
j′<j

E[P j
i (a)]

≥ Ea∗
ij
[vji (X

j
i (a

∗
ij, a

j
−i(h

j
−i)))− P j

i (a
∗
ij, a

j
−i(h

j
−i))]− E[Pi(a)]

Also aj−i(h
j
−i) is the action profile submitted by the rest of the players at mecha-

nism j when players use contingency plan a in the global game and hence each

observes a history hj
i produced by this plan.

110



Summing over all players we get:

∑
i

UM
i (a∗

i (v, ai), a−i; vi) ≥

∑
j

∑
i:j∗i =j

Ea∗
ij
[vji (X

j
i (a

∗
ij, a

j
−i(h

j
−i)))− P j

i (a
∗
ij, a

j
−i(h

j
−i))]−RM(a)

Now observe that

I ,
∑
i:j∗i =j

Ea∗
ij
[vji (X

j
i (a

∗
ij, a

j
−i(h

j
−i)))− P j

i (a
∗
ij, a

j
−i(h

j
−i))]

represents the sum of utilities when each player unilaterally deviates to a∗
ij in

mechanism Mj while previously everyone was playing aji (h
j
i ) (the action that

they are submitting to mechanism Mj when each seeing a history of play hj
i

in previous mechanisms) and when all players with j = j∗i have valuations

vji : X j
i → R+, while the rest of the players have value 0 for any outcome.

Observe that this history of play hj
i is the same as the history of play produced

by contingency plan a of the global mechanism, since the deviation of player i

didn’t change the history up till mechanism Mj . Therefore aj(hj) = (aji (h
j
i ))i∈[n]

is the action profile that would have been played at mechanism m under the

contingency plan a.

In fact, the above sum is at least the sum of these utilities, since we also need

to subtract the payments of the players with 0 valuation to get exactly the sum

of the utilities. Let vj,∗ be the valuation profile consisting of the above induced

valuations vji on mechanism Mj .

The value of the optimal outcome in such a setting for mechanism Mj is at

least the value of outcome xj,∗. Hence, the smoothness of mechanism Mj says

that there must exist a strategy a∗
ij = a∗

ij(v
j, aji (h

j
i )) such that:

I ≥ λ
∑
i:j∗i =j

vji (x
∗
ij)− (1 + µ)

∑
i

P j
i (a

j(hj))
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Since the utilities of the agents with 0 valuation never help the left hand side

of the above sum, smoothness actually implies that there exist strategies a∗
ij =

a∗
ij(v

j, aji (h
j
i )) only for the players with non-zero valuation, such that the sum

over the utilities of only those agents is at least the right hand side in the above

equation.

Note again that P j
i (a

j(hj)) is the payment made at mechanism j under strat-

egy profile a of the global game, since the deviation of the player didn’t change

the history of play.

Thus if we set the randomized strategies of the players to follow the above

smoothness deviation and sum over all players we will get the global smooth-

ness property. Observe that the deviation a∗
ij(vj, a

j
i (h

j
i )) is a whole contingency

plan: play until mechanism j and then observe hj
i ; conditional on hj

i figure out

which action you would have played under your initial strategy ai; then use the

smoothness deviation corresponding to this action.

5.3 Example: Sequential First Price Auctions

We instantiate the theory presented in this chapter for the case of sequential first

price single item auctions. Such an auction game has a long history in the eco-

nomics literature, starting from the seminal works of Milgrom and Weber [53]

and Weber [69]. However, almost all of the literature makes several simplifying

assumptions (e.g. symmetry among items and among bidders, two items or two

bidders etc.) so as to make an equilibrium characterization feasible. Moreover,

most these assumptions either lead to a fully efficient allocation (e.g. symmetry)

or are limited in their applicability (e.g. two items or two bidders).
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The results of this chapter allows us to quantify the inefficiency of sequen-

tial first price auctions with incomplete information and arbitrary asymmet-

ric value distributions. Specifically, since by Lemma 3.1.3 the first price auc-

tion is a
(
1− 1

e
, 1
)
-smooth mechanism, Theorem 5.2.1 implies that the sequen-

tial first price auction mechanism is
(
1− 1

e
, 2
)
-smooth via swap deviations.

Subsequently Theorem 5.1.3 implies that the expected welfare at every Bayes-

Nash (and Bayes-correlated) equilibrium, under unit-demand (non-identical

items) valuations drawn from independent asymmetric distributions is at least

1
2

(
1− 1

e

)
≈ 0.316 of the expected optimal matching allocation. Moreover, this

result holds irrespective of what information is revealed at the end of each auc-

tion.

We point out that inefficiency can arise even at subgame perfect equilibria of

the complete information game, when items are not identical and players have

asymmetric valuations. Consider the example given in Figure 5.1 of a sequential

first price auction of three items among four players. Player b prefers to loose

the first item, anticipating that he might get a similar item for a cheaper price

later. This gives an example where the Price of Anarchy is 3/2. Notice that this

is the only equilibrium using non weakly-dominated strategies.

Sequential composability proof unraveled. For better understanding of the

main result of this chapter, we describe here the smoothness deviation that is

constructed in the proof of Theorem 5.2.1 for the special case of sequential first

price auctions with unit-demand bidders.

Denote with j∗(i) the item allocated to player i in the optimal matching al-

location. Then the smoothness deviation is as follows: behave exactly as your
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A

B B

C C C C

A C B

va = ϵ vb = α vc = α vd = α− ϵ

b wins
ub = α− ϵ

a wins
ua = ϵ

c wins d wins c wins d wins

—
ua = 0
ub = α− ϵ
uc = ϵ
ud = 0

c wins
ua = 0
ub = α− ϵ
uc = α
ud = α− ϵ

b wins
ua = ϵ
ub = α
uc = ϵ
ud = 0

b or c wins
ua = ϵ
ub = 0
uc = 0
ud = α− ϵ

Figure 5.1: Sequential Multi-unit Auction generating POA 3/2: there are
4 players {a, b, c, d} and three items that are auctioned first A,
then B and then C. The optimal allocation is b → A, c → C, d →
B with value 3α − ϵ. There is a subgame perfect equilibrium
that has value 2α + ϵ. In the limit when ϵ goes to 0 we get
POA = 3/2.

previous action ai, until the auction for item j∗i arrives. Then at that auction

submit your local smoothness deviation for value wi,j∗(i) and assuming you are

the only player with non-zero value. Thus submit a random bid with density

function f(x) = 1
wi,j∗(i)−x

and support [0, (1− 1/e)wi,j∗(i)] at item j∗(i), then drop

out from the remaining auctions.

From local smoothness, the utility that the player derives from auction

j∗(i) is at least:
(
1− 1

e

)
wi,j∗(i) − RMj∗(i)(bj

∗(i)). Moreover, while simulating

his previous action he paid at most his payment E[Pi(a)] under the previ-

ous action profile. Therefore, the overall utility from the deviation is at least:(
1− 1

e

)
wi,j∗(i) − RMj∗(i)(bj

∗(i)) − E[Pi(a)]. The global (λ, µ + 1)-smoothness
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via swap deviations follows by summing over all players and observing that∑
i∈[n]wi,j∗(i) = OPT(v) and

∑
i RMj∗(i)(bj

∗(i)) = RM(b), since j∗(·) is a matching.

Bluffing and extension to incomplete information unraveled. When extend-

ing the efficiency guarantee to incomplete information, the deviation that is

constructed by the extension Theorem 5.1.3 is as follows: randomly sample a

valuation profile w−i for your opponents and target the item that you are allo-

cated in the optimal matching for valuation profile (vi, w−i). Denote this with

j∗(i). Then draw a sample wi of your own value and perform as that randomly

sampled player would have performed at the previous strategy profile, until

item j∗(i) arrives. Then deviate to the smoothness deviation described in the

previous paragraph.

Randomly sampling your own type and playing as a random sample corre-

sponds to a bluffing deviation, since a player pretends to be some other value,

until his item of interest arrives. The reason for this bluffing trick is so that the

rest of the players will not be able to infer anything about his true valuation

through the observed history of play. Thus when item j∗(i) arrives the player is

facing a random price that is drawn from the same distribution as the ex-ante

equilibrium distribution and not the equilibrium distribution conditional on his

true valuation, which can potentially be arbitrarily higher.

5.3.1 Necessity of Unit-Demand Assumption

We will show that if we depart from the unit-demand assumption then we can

no longer hope the local smoothness property of a mechanism to imply global
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guarantees that don’t degrade with the size of the market. Specifically, we give

a complete information example of a sequential first price auction with some

players being additive and some being unit-demand, where the inefficiency

grows linearly with the number of players or the number of items. Thus even

the presence of additive players destroys the sequential composability property

of smooth mechanisms.

Theorem 5.3.1. The price of anarchy of the sequential first-price item auctions with

additive and unit-demand bidders is Ω(min{n,m}). Moreover, this result persists even

if we consider only subgame perfect equilibria that survive iterated elimination of weakly

dominated strategies.

Informal Description. Before we delve into the details of the proof of The-

orem 5.3.1, we give a high-level idea of the type of strategic manipulations that

lead to inefficiency and compare to the corresponding simultaneous auction.

Consider an auction instance where two additive bidders have identical val-

ues for most of the items for sale, but their valuations differ only on the last few

items that are sold. Specifically, assume that there are two items Z1 and Z2, auc-

tioned last, such that only player 1 has value for Z1 and only player 2 has value

for Z2. We will refer to these items as the non-competitive items and to all other

items as the competitive items. The additive bidders know that it is hopeless to try

to achieve any positive utility from the competitive items on which they have

identical interests. The only utility they can ever derive is from the last, non-

competitive items on which they don’t compete with each other. If these were

the only two players in the auction, then we would obtain the optimal outcome:

the two bidders would simply compete on each of the competitive items, with
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one of them acquiring each competitive item at zero utility.1

We now imagine adding unit-demand bidders to the auction in order to per-

turb the optimality. Specifically, suppose there is a unit-demand bidder that has

value for the two non-competitive items, with the value for item Zi being slightly

less than player i’s value for Zi, i ∈ {1, 2}. This endangers the additive bidders’

hopes of getting non-negligible utility, since competition from the unit-demand

player may drive up the prices of Z1 and Z2. The only hope that the additive bid-

ders have is that the unit-demand bidder will have his demand satisfied prior

to these final two auctions, in which case the unit-demand bidder would not

bother to bid on them. Hence, the two additive bidders would do anything in

their power to guide the auction to such an outcome, even if that means sac-

rificing all the competitive items! This is exactly the effect that we achieve in

our construction. Specifically, we create an instance where this competing unit-

demand bidder has his demand satisfied prior to the auctions for Z1 and Z2 if

and only if a very specific outcome occurs: the additive bidders don’t bid at all

on all the competitive items, but rather other small-valued bidders acquire the

competitive items instead. These small-valued bidders contribute almost noth-

ing to the welfare, and therefore all of the welfare from the competitive items is

lost.

It is useful to compare this example with what would happen if the auctions

were run simultaneously, rather than sequentially. This uncovers the crucial

property of sequential auctions that leads to inefficiency: the ability to respond

to deviations. If all auctions happened simultaneously, then the behavior of the

additive bidders that we described above could not possibly be an equilibrium:

one additive bidder, knowing that his additive competitor bids 0 on all the com-

1In fact, optimality is always achieved when all bidders are additive, in general.
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petitive items, would simply deviate to outbid him on the competitive items

and get a huge utility. However, because the items are sold sequentially, this

deviation cannot be undertaken without consequence: the moment one of the

additive bidders deviates to bidding on the competitive items, in all subsequent

auctions the competitor will respond by bidding on subsequent competitive

items, leading to zero utility for the remainder of the auctions. Moreover, this

response need not be punitive, but is rather the only rational response once the

auction has left the equilibrium path (since the additive bidders know that there

is no way to obtain positive utility in subsequent auctions). Thus, in a sequential

auction, an additive player can only extract utility from at most one competitive

item, which is not sufficient to counterbalance the resulting utility-loss due to

the increased competition on the last non-competitive item.

The Lower Bound. We now proceed with a formal proof of Theorem 5.3.1.

Consider an instance with 2 additive players, k + 1 unit-demand players and

k+3 items. Denote with {a, b} the two additive players and with {p0, p1, . . . , pk}

the k+1 unit-demand players. Also denote the items with {I1, . . . , Ik, Y, Z1, Z2}.

The valuations of the additive players are represented by the following table of

vij , where ϵ > 0 is an arbitrarily small constant:

Ik . . . I1 Y Z1 Z2

a 1 + ϵ . . . 1 + ϵ 0 10 0

b 1 . . . 1 0 0 10

In addition, the unit-demand valuations for the remaining k + 1 players are

given by the table of vij that follows (an empty entry corresponds to a 0 valua-

tion), though now a valuation of a player when getting a set S is maxj∈S vij :
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Ik Ik−1 Ik−2 . . . I2 I1 Y Z1 Z2

p0 . . . 10− ϵ 10− ϵ 10− ϵ

p1 . . . δ1 10

p2 . . . δ2 δ2

. . .

pk−1 δk−1 δk−1 . . .

pk δk δk . . .

The constants δ1, . . . , δk are chosen to satisfy the following condition:

δk > δk−1 > . . . > δ2 > δ1 > ϵ (5.4)

Note that, by taking ϵ to be arbitrarily small, we can take each δi to be arbitrarily

small as well.

In the optimal allocation, player a gets all the items I1, . . . , Ik and Z1, player

b gets Z2 and player p1 gets Y . The resulting social welfare is k(1 + ϵ) + 30. We

assume that the auctions take place in the order depicted in the valuation tables:

{Ik, . . . , I1, Y, Z1, Z2}. We will show that there is a subgame perfect equilibrium

for this auction instance such that the unit-demand players win all the items

I1, . . . , Ik. Specifically, player pi wins item Ii, player a wins Z1, player b wins Z2,

and player p0 wins Y , resulting in a social welfare of 30 − ϵ +
∑k

i=1 δi. Taking δ

sufficiently small, this welfare is at most 31. This will establish that the price of

anarchy for this instance is at least k(1+ϵ)+30
31

= O(k), establishing Theorem 5.3.1.

Furthermore, we will show that this subgame perfect equilibrium is natural, in

the sense that it survives iterated deletion of weakly dominated strategies.

The intuition is the following: after the first k auctions have been sold, player

p0 has to decide if he will target (and win) item Y , or if he will instead target
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items Z1 and/or Z2. If he targets item Y , he competes with player p1 and after-

wards lets players a and b win items Z1, Z2 for free. This decision of player p0

depends on whether player p1 has won item I1, which in turn depends on the

outcomes of the first k− 1 auctions. In particular, player p1 can win item I1 only

if player p2 has won item I2. In turn, p2 can win I2 only if p3 has won item I3 and

so on. Hence, it will turn out that in order for p0 to want to target item Y , it must

be that each item Ii is sold to bidder pi. Thus, if either player a or b acquires any

of the items I1, . . . , Ik, they will be guaranteed to obtain low utility on items Z1

and Z2. This will lead them to bidding truthfully on all subsequent Ii auctions,

leading to a severe drop in utility gained from future auctions.

In the remainder of this section, we provide a more formal analysis of the

equilibrium in this auction instance. We begin by examining what happens in

the last three auctions of Y, Z1 and Z2, conditional on the outcomes of the first k

auctions. We first examine the outcome of auctions Y, Z1, Z2 conditional on the

outcome of auction I1:

Case 1: p1 has won I1. Player p1 has marginal value of 10− δ1 for item Y . Hence,

he is willing to bid at most 10 − δ1 on item Y . Player p0 knows that if he loses

Y then in the subgame perfect equilibrium in that subgame he will bid 10 − ϵ

on Z1 and Z2 and lose. Thus he expects no utility from the future if he loses Y .

Thus he is willing to pay at most 10 − ϵ for item Y . Since by assumption (5.4)

δ1 > ϵ, player p0 will win Y at a price of 10 − δ1. Then players a, b will win Z1

and Z2 for free. Thus the utilities in this case from this subgame are: u(a) = 10,

u(b) = 10, u(p0) = δ1 − ϵ, u(p1) = 0.

Case 2: p1 has lost I1. Player p1 has marginal value of 10 for item Y . Hence, he is

willing to bid at most 10 on item Y . Player p0 performs the exact same thinking
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as in the previous case and thereby is willing to bid at most 10 − ϵ for item Y .

Thus in this case p1 will win item Y at a price of 10 − ϵ. Then, as predicted, p0

will bid 10− ϵ on Z1 and Z2 and lose. Thus the utilities of the players in this case

are: u(a) = ϵ, u(b) = ϵ, u(p0) = 0, u(p1) = ϵ.

Now we focus on the auction of item I1. As was explained in Paes Leme

et al. [56] this auction will be an auction with externalities where each player

has a different utility for each different winner outcome. These utilities can be

concisely expressed in a table of vij’s where vij is the value of player i when

player j wins. The only players that potentially have any incentive to bid on

item I1 are a, b, p0, p1, p2. The following table summarizes their values for each

possible winner outcome of auction I1 as was calculated in the previous case-

analysis (we point that in the diagonal we also add the actual value that a player

acquires from item I1 to his future utility conditional on winning I1) .

[vij] =

a b p0 p1 p2

a 1 + 2ϵ ϵ ϵ 10 ϵ

b ϵ 1 + ϵ ϵ 10 ϵ

p0 0 0 0 δ1 − ϵ 0

p1 ϵ ϵ ϵ δ1 ϵ

p2 0 0 0 0 δ2 · 1hasn’t won I2

For example, player a obtains utility 10 if player p1 wins item I1. We see from

the table that, at this auction, everyone except p2 achieves their maximum value

when p1 wins the auction. Player p2 has value for winning the auction only if

he hasn’t won I2. In addition, since δ2 > δ1, if p2 hasn’t won I2 then he can

definitely outbid p1 on I1 and therefore p1 has no chance of winning the auction

121



of I1. As we now show, this implies that there is a unique equilibrium of the

auction conditioning on whether or not p2 has won I2:

Case 1: If p2 has won I2 then he has no value for I1. There exists an equilibrium

in undominated strategies where all players a, b, p0, p2 will bid 0, while p1 bids

0+. In fact this is in some sense the most natural equilibrium since it yields the

highest utility for a and b. In this case the utility of the players from auctions I1

and onward will be: u(a) = 10, u(b) = 10, u(p0) = δ1 − ϵ, u(p1) = δ1, u(p2) = 0.

Case 2: If p2 has lost I2, then he has value of δ2 > δ1 for I1. Hence, p1 has no

chance of winning item I1. Thus, the unique equilibrium that survives elimi-

nation of weakly dominated strategies in this case is for player a to bid 1+, for

player b to bid 1, for player p0 to bid 0, for player p1 to bid δ1 − ϵ and for player

p2 to bid δ2. In this case the utility of the players from auctions I1 and on will be:

u(a) = 2ϵ, u(b) = ϵ, u(p0) = 0, u(p1) = ϵ, u(p2) = 0.

Using similar reasoning we deduce that player pi can win Ii only if pi−1 has

won Ii−1. If at any point some pi does not win Ii then players a and b know

that from that point onward no pj can win auction Ij , and therefore they will

get only utility ϵ from Z1, Z2. Thus there will be no reason for players a and

b to allow unit-demand players to continue to win items, and thus the only

equilibrium strategies from that point on will be for a to bid 1+ on each of Ii

and b to bid 1. This will lead to player a to get utility O(ϵ) from each auction

for items Ii−1, . . . , I2, and player b to get no utility from these auctions. Thus, at

any point in the auction, it is an equilibrium for players a and b to allow the unit

demand player pi to win auction Ii. This completes the proof of Theorem 5.3.1

Finally, as discussed throughout our analysis, the equilibrium described
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above survives iterated elimination of weakly dominated strategies. The rea-

son is that, for every item k and bidder i, the proposed equilibrium strategy for

bidder i does not require that he bids more than his value for item k less his util-

ity in the continuation game subject to not winning item k. As discussed in Paes

Leme et al. [56], this property guarantees that no player is playing a weakly

dominated strategy.
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6

WEAK SMOOTHNESS AND NO-OVERBIDDING

The second price auction is not a smooth mechanism based on the current def-

inition of smoothness. In fact, the second price auction is not as robust as first

price auctions: admits arbitrarily bad equilibria when players bid above their

value. Moreover, Goeree [32] shows that signaling is bound to arise in a sec-

ond price auction when bidders are strategising about future opportunities, and

Paes Leme et al [56] show an example with unbounded inefficiency when run-

ning second price auctions sequentially and bidders are unit-demand.

The main difference of the second price auction and the previous two auc-

tions is that it makes very loose connection between the bid a player needs to

make to win and the price that was previously paid to the auctioneer. Several

papers [15, 8, 50, 13] have used an assumption that players will not bid above

their valuations to give good efficiency guarantees for second-price type of auc-

tions. In this chapter, we extend our results to mechanisms that require such

no-overbidding assumptions.

6.1 Efficiency under the No-Overbidding Assumption

We give a generalization of our framework to capture mechanisms that produce

high efficiency under a no-overbidding refinement. In the context of a single-

item second price auction, the no-overbidding refinement simply selects only

equilibria where no player bids more than his value for the item. Observe that

without this refinement, the second-price auction has very inefficient equilibria
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where low value players bid a huge amount, while high value players bid zero.

Thereby such a refinement is necessary even in the single-item second price

auction.

First, we give a definition of no-overbidding that generalizes the latter no-

overbidding refinement to any mechanism design setting and any mechanism.

In a single-item second-price auction the bid of a player is his maximum will-

ingness to pay when he wins. The following defines the notion of a “bid” in the

general mechanism design setting.

Definition 6.1.1 (Implicit Bid). Given a mechanism (A, X, P ), a player’s implicit bid

for an allocation xi when using strategy ai, is defined as the maximum he could ever

pay conditional on allocation xi:

Bi(ai, xi) = max
a−i: Xi(a)=xi

Pi(a) (6.1)

Definition 6.1.2 (Weakly Smooth Mechanism). A mechanism is weakly (λ, µ1, µ2)-

smooth for λ, µ1, µ2 ≥ 0, if for any v ∈ V there exists a randomized action a∗
i (v) for

each player i, such that for any action profile a:∑
i

UM
i (a∗

i (v, ai), a−i; vi) ≥ λOPT(v)− µ1RM(a)− µ2

∑
i

Bi(ai, Xi(a))

Similarly, we can also define the relaxed notion of weak smoothness via

swap deviations, with the corresponding implications on robustness of guar-

antees discussed in the previous sections.

Definition 6.1.3 (No-overbidding). A randomized strategy profile a satisfies the no-

overbidding assumption if:

Ea [Bi(ai, Xi(a))] ≤ Ea [vi(Xi(a))] (6.2)

i.e., at this strategy profile no player is bidding in a way that she could potentially pay

more than her value subject to her expected allocation remaining the same.
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Note that the smoothness property must be satisfied for any action pro-

file and not only for non-overbidding action profiles. This is essential for the

smoothness property to be composable. As an example, note that the single item

second price auction is weakly (1, 0, 1)-smooth, but is not (1, 1)-smooth (which

would be true if smoothness was required only for non-overbidding strategies),

and while a single item second price auction is optimal, this property is not

maintained in composition. In a composition setting, local no-overbidding is

not meaningful, since there is no clear induced valuation of a player at each

local mechanism and is only meaningful on the overall mechanism.

Following arguments very similar to the proof of Theorem 3.2.1 together

with the no-overbidding assumption it is easy to show the following efficiency

theorem.

Theorem 6.1.4. If a mechanism is weakly (λ, µ1, µ2)-smooth then any Bayes coarse

correlated equilibrium that satisfies the no-overbidding assumption achieves efficiency

at least λ
µ2+max{µ1,1} of the expected optimal.

Composability of weak smoothness. Moreover, it is also easy to show anal-

ogous composability theorems, following the same arguments as in Theo-

rems 4.2.2, 4.5.5 and 5.2.1. Specifically, the simultaneous composition of m

weakly (λ, µ1, µ2)-smooth mechanisms is weakly (λ, µ1, µ2)-smooth if players

have XOS − C valuations and (1− k +min {λ, 1} · k, µ1, µ2) if players have

MPH-k valuations across mechanisms. The sequential composition is weakly

(λ, µ1 + 1, µ2)-smooth if players have unit-demand valuations across mecha-

nisms.
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6.2 On the No-Overbidding Assumption

Remark 1. In contrast to the smoothness used in [60] our definition of weakly

smooth mechanisms allows us to prove efficiency under the weaker assumption

of no-overbidding in expectation, rather than point-wise no-overbidding. The

main difference is that we incorporate the willingness-to-pay inside the smooth-

ness definition, while previous smoothness approaches would relate to value

directly. The latter approach would require to use point-wise no-overbidding to

relate bids to welfare in second-price auctions.

Remark 2. We use the non-overbidding assumption as an equilibrium re-

finement rather than as a strategy-space restriction. Several papers in the litera-

ture have used non-overbidding as a strategy space restriction (rather than as an

equilibrium refinement). The two uses are equivalent in settings where the re-

stricted strategy space always contains best-responses. Note that while overbid-

ding is a dominated strategy in a single item auction, global no-overbidding is

not dominated when running second price auctions simultaneously or sequen-

tially. Overbidding equilibria that survive elimination of dominated strategies

and that have non-constant inefficiency have been given both for the case of se-

quential [56] and simultaneous [25] second price auctions, even in the simplest

scenario when bidders are unit-demand.

Restricting the strategy space to non-overbidding strategies, could poten-

tially create artificial equilibria that were not equilibria of the original game,

since this restricted strategy space does not always contain best-responses (see

[25] for an example). On the other hand, the refined set of non-overbidding

equilibria might be empty. Below we portray these differences via an example.
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EXAMPLE 6.2.1. (No-overbidding Restriction vs. Refinement) Consider the fol-

lowing setting: there are two items A,B and two bidders a, b. Each item is sold

separately and simultaneously via a second-price auction (breaking ties at ran-

dom). Bidder a has value 1 for both items and 0 for any item individually (i.e.

he is an AND bidder). Bidder b is a “Bayesian” additive player and we describe

his additive values for each of the items: with probability 1/3 he has value 2/3

only for item a, with probability 1/3 he has value 2/3 only for item b and with

probability 1/3 he has a value of 2/3 for each of the items.

Strategy space restriction. If we use the strategy space restriction of the no-

overbidding assumption, then the following is an equilibrium: bidder a bids 0

on both items and bidder b bids “truthfully”. Since bidder a can never overbid,

it must be that the sum of his bids on the two items is at most 1. If he bids

below 2/3 on both items then he never wins both of them, thereby getting non-

positive utility. Thus he must be bidding at least 2/3 on one of the two items

and in fact any such strategy is dominated by bidding more than 2/3 on one

of the two items and a non-zero amount on the other. In that case he wins

both items with probability only 1/3: it is the probability that player b has value

only for the item that player a chose to bid more than 2/3. Moreover, he is

paying an expected price of 2/3 · 2/3. Thus his utility from any such deviation

is negative and thereby his utility from any no-overbidding deviation is non-

positive, making the current action an equilibrium within the restricted strategy

space.

However, the above strategy profile is not a Bayes-Nash equilibrium of the

original game without the restriction on the strategy space. Player a can deviate

to bidding 1 on both items. In that case he wins the bundle deterministically and
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he pays an expected price of 2/3 · 2/3 + 1/3 · 4/3 = 8/9. His utility from this de-

viation is 1/9 and thereby profitable. Thus we see that using no-overbidding as

a refinement can create artificial equilibria that were not existent in the original

game. Most importantly, it disallows the players to make deviating strategies

that can be profitable.

Refinement. If we use no-overbidding as a refinement, we are simply search-

ing for a Bayes-Nash equilibrium of the original game, in which no-player bids

in a way that his expected bid for the item that he wins is more than his ex-

pected value for these items. However, this set of Bayes-Nash equilibria can be

potentially empty and in fact they are empty in the above instance.

First observe, that in any Bayes-Nash equilibrium, if player a bids below 2/3

on some item, then he will lose the item if player b also has a value for it. Ob-

serve that because of the strategy of player a at equilibrium must satisfy the

no-overbidding constraint, he cannot be winning the bundle when player b has

value for both items, since for that to happen he must be bidding at least 2/3

on both items (which would lead to overbidding). Thus he can only be winning

the bundle when player b has value for only one item. Since player a doesn’t

know which item player b has value for, and since he cannot be bidding more

than 2/3 on both items, he can only be winning the bundle with probability at

most 1/3. Moreover, for any such no-overbidding bid that wins the bundle with

probability 1/3, the player has to be paying an expected payment of 4/3. Lead-

ing to non-positive utility. Thus with any bid that satisfies the no-overbidding

assumption, the player must be making 0 utility, which would then not render

it an equilibrium, since he can always switch to bidding 1 on both items. Thus

the refined set of non-overbidding equilibria is empty.
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In this particular example, the main reason for the emptiness is that player a

has complementary valuations across the items. It is an interesting open ques-

tion whether Bayes-Nash equilibria with no-overbidding always exist in simul-

taneous second price auctions, when players have XOS valuations. This fact is

known only in the complete information setting (see Christodoulou et al. [15]).

Some of our results carry over to the strategy-space restriction version.

Specifically, when the smoothness deviations fall within the space of non-

overbidding actions then the efficiency guarantees hold even when no-

overbidding is used as a strategy-space restriction.

Moreover, it is easy to see that we can relax the no-overbidding refinement at

the expense of efficiency, by saying that a player doesn’t bid more than γ times

his expected value. In that case the welfare guarantee of any weakly (λ, µ1, µ2)-

smooth mechanism, will become λ
γµ2+max{1,µ1} .

6.3 Example: Simultaneous Second Price Auctions

We revisit the setting of simultaneous single-item auctions and now analyze the

case of simultaneous second price auctions, under the lens of the results of this

chapter. We portray how the price of anarchy results of Christodoulou et al [15]

and Bhawalkar et al [8] on the Bayes-Nash price of anarchy of this setting, can

be re-interpreted as a corollary of the weak smoothness property of a single item

second price auction.

Lemma 6.3.1. The second price auction is a weakly (1, 0, 1)-smooth mechanism.
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Proof. Consider valuation profile v = (v1, . . . , vn). The highest value player

(wlog player 1) can deviate to submitting his true value v1, while all non-highest

value players should just deviate to bidding 0. No matter what the rest of the

players are bidding, the utility of the highest bidder from the deviation is lower

bounded as follows:

U SPA
1 (v1, b−1; v1) =

(
v1 −max

i ̸=1
bi

)
· 1{v1 > max

i̸=1
bi} ≥ v1 −max

i ̸=1
bi ≥ v1 −max

i
bi

The result follows by observing that
∑

iBi(bi, Xi(b)) = maxi bi.

The weak (1, 0, 1)-smoothness property of the second price auction, com-

bined with the composability theorems for weakly smooth mechanisms implies

that simultaneous second price auctions is a weakly (1, 0, 1)-smooth mechanism

when players have XOS valuations over the items. Hence, when valuations

are drawn independently from arbitrary distributions every Bayes coarse corre-

lated equilibrium that satisfies the no-overbidding assumption achieves at least

1/2 of the expected optimal welfare.

Two-approximation for any monotone valuation. Quite surprisingly for

MPH-k valuations, because λ = 1, we get that the simultaneous second price

auction mechanism is weakly (1, 0, 1)-smooth independent of k. Thus every

Bayes coarse correlated equilibrium that satisfies the no-overbidding assump-

tion achieves at least 1/2 of the expected optimal welfare for arbitrary monotone

valuations (since MPH-m contains all monotone valuations). In other words,

the price of anarchy bound for MPH-k valuations does not degrade with k.

While this result seems quite positive, we suggest that it can be interpreted

as indicating the strength of the no-overbidding refinement, especially in the
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presence of complementarities. Indeed, the efficiency result is conditional on

equilibrium existence, and the set of no-overbidding equilibria (i.e. equilibria

where the expected sum of bids of a player for the items he won is at most his

expected value for the items he won) might be empty.

132



7

BUDGET CONSTRAINTS

An important class of non-quasilinear preferences is when players have hard

budget constraints on the payments they make, i.e.:

ui(xi, pi; vi, Bi) =


vi(xi)− pi if pi ≤ Bi

−∞ o.w.
(7.1)

Studying the effect of budgets on the design of efficient mechanisms has

received great attention in recent algorithmic game theory literature [18, 28, 31,

20] mostly in the realm of truthful mechanism design and assuming that the

budgets are common knowledge. Little is known about the effect of budgets in

the case of non-truthful mechanisms. For instance, only recently Huang et al.

[37] analyzed efficiency in a two-player sequential first price auction game with

budget constraints in the complete information setting.

In this chapter we examine the efficiency of smooth mechanisms in the pres-

ence of budget constraints and at a high level show the following informal the-

orem:

Informal Theorem 4. If a mechanism is (λ, µ)-smooth and the smoothness deviations

satisfy a minimal “conservative” assumption, then all the efficiency guarantees extend

to the budget constraint setting but with respect to the optimal welfare achievable if

every player’s valuation is capped by his budget.
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7.1 The Effective Welfare Benchmark

Most of the literature has focused on producing pareto-optimal outcomes, i.e. a

pair of allocation and prices such that there is no other pair that respects feasibil-

ity and budget constraints and such that all players have strictly higher utility

and the auctioneer receives strictly higher revenue.

Instead, we analyze an orthogonal benchmark, which we call Effective Wel-

fare, obtained by capping a player’s value by his budget:

EW (x) =
∑

imin{vi(xi), Bi} (7.2)

We compare the social welfare of a mechanism to the maximum possible effec-

tive welfare. This benchmark reflects that we cannot expect players with low

budgets to be effective at maximizing their own value.

The effective welfare benchmark was also analyzed in the context of truth-

ful auctions by Dobzinski and Paes Leme [19]. However, [19] quantifies the

even stronger ratio of the effective welfare (rather than social welfare) of the

mechanism’s outcome over the optimal effective welfare. Here we use effective

welfare as a benchmark to analyze the welfare of non-truthful mechanisms at

equilibrium.

7.2 Smoothness via Conservative Deviations

We show that a lot of our results carry over to the effective welfare benchmark,

by introducing a strengthening of the smoothness property of mechanisms (a

strengthening that is satisfied by almost all the applications we consider) and
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assuming that the valuation spaces Vi considered is closed under capping, i.e.,

for any valuation vi ∈ Vi and any budget Bi, we also have min{vi(·), Bi} ∈ Vi.

We focus on smooth mechanisms, but all the results in this section extend

to smooth mechanisms via swap deviations (with the exception that bounds

extend to BAYES-CE rather than BAYES-CCE for reasons explained in Chapter

5) and to weakly smooth mechanisms assuming no-overbidding.

Definition 7.2.1 (Smooth Mechanism via Conservative Deviations). A mecha-

nism is conservatively (λ, µ)-smooth if it is (λ, µ)-smooth in the quasilinear utility

setting and the smoothness deviations satisfy that for any a∗i in the support of a∗
i (v),

player i can never pay more than his maximum valued allocation:

max{p : a−i ∈ A−i and p ∈ SUPP(Pi(a
∗
i , a−i))} ≤ max

xi∈Xi

vi(xi) (7.3)

The next theorem shows that the expected social welfare at BAYES-CCE of

conservatively smooth mechanisms is a good fraction of the optimal effective

welfare, when players have budget constraints. Note that in the incomplete

information setting, the private information of a player is his valuation and his

budget. We will denote the valuation and budget pair as the type ti = (vi, Bi)

of player i and we will assume that it is distributed independently according to

some distribution Fi on Vi × R+. Note that we allow the budget of a player to

be correlated with his valuation. Under this notation we will write the utility of

a player from mechanism M under budget constraint Bi as:

ÛM
i (a; ti) =


UM
i (a; vi) if max{p : p ∈ SUPP(Pi(a))} ≤ Bi

−∞ o.w.
(7.4)

Theorem 7.2.2 (Efficiency with Budgets). If a mechanism is conservatively (λ, µ)-

smooth and its valuation space is closed under capping, then the social welfare at any
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Bayes coarse correlated equilibrium is at least λ
max{1,µ} of the expected maximum effective

welfare, even if players have private budget constraints.

Proof. We begin with the following observation: if for any action profile a

in the support of a random action profile a it holds that max{p : p ∈

SUPP(Pi(a
∗
i , a−i))} ≤ Bi then the expected utility of a player with a budget con-

straint Bi is the same as the expected utility of an unconstrained player with

quasi-linear utility.

Consider a valuation and budget profile t = (v,B). Let v̂ be the corre-

sponding capped valuation profile where each players valuation is replaced

with v̂i = min{vi, Bi}.

Since we assumed that the mechanism is (λ, µ)-smooth via conservative de-

viations and the valuation space is closed under capping, for any strategy profile

a there exists a randomized strategy a∗
i (v̂) for each player such that under the

quasilinear utility setting:

∑
i

UM
i (a∗

i (v̂), a−i; v̂i) ≥ λOPT(v̂)− µRM(a)

and such that for all a∗i in the support of a∗
i (v̂):

max{p : ã−i ∈ A−i and p ∈ SUPP(Pi(a
∗
i , ã−i))} ≤ max

xi∈Xi

v̂i(xi) ≤ Bi

Suppose that in the budgeted setting each player i deviates to a∗
i (v̂). Then by

the above conservativeness of this deviating strategy and the initial observation

we know that the expected utility of a budgeted player under this deviation is

the same as the expected utility of a player with quasi-linear utilities and value

vi. Subsequently the expected utility of a player with quasi-linear utilities and
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value vi is at least the utility of a player with quasi-linear utilities and value v̂i.

Thus we get:

∑
i

ÛM
i (a∗

i (v̂), a−i; ti) =
∑
i

UM
i (a∗

i (v̂), a−i; vi) ≥
∑
i

UM
i (a∗

i (v̂), a−i; v̂i)

≥ λOPT(v̂)− µRM(a) (7.5)

Using the above property we can now complete the proof of the Theorem

similar to the proofs of Theorems 3.3.7 and 5.1.3. The only extra point we need

to make is that due to the fact that a player can always drop out we know that

at any equilibrium solution concept no player is going to ever be exceeding his

budget at any action profile in the support of the solution concept since other-

wise his utility would have been minus infinity. Hence, at any action profile in

the support of an equilibrium the utility of a player will behave as if quasilinear.

For completeness we present the proof.

Consider the following feasible deviation of player i under incomplete in-

formation: she random samples a type profile τ = (w,C) ∼ F . Let ŵi =

min{wi, Ci} be the capped random sampled valuations. Then he plays s∗i (ti) =

a∗
i (v̂i, ŵ−i). By similar reasoning as in the proof of Theorem 3.2.1 we can show

that for any strategy profile in the incomplete information game s : Σ:

Et

[
ÛM
i (s∗i (ti), s−i(t−i); ti)

]
= Et,τ

[
ÛM
i (a∗

i (ŵ), s−i(t−i); τi)
]

Summing over all players and using Equation (7.5):

∑
i∈[n]

Et

[
ÛM
i (s∗i (ti), s−i(t−i); ti)

]
= Et,τ

∑
i∈[n]

ÛM
i (a∗

i (ŵ), s−i(t−i); τi)


≥ λEτ [OPT(ŵ)]− µEt

[
RM(s(t))

]
If s ∈ ∆(Σ) is a BAYES-CCE, then each player doesn’t want to deviate to the
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above s∗i . Thus taking expectation over s of the above equation and by standard

manipulations we get the theorem.

7.3 Simultaneous Composability with Budget Constraints

Next, we show that efficiency guarantees for bidders with budget-constraints

are simultaneously composable under the conservative smoothness property.

Unfortunately, sequential composition doesn’t carry over. In sequential mecha-

nisms a good deviation may require that the player waits and plays according

to equilibrium until his optimal mechanism arrives. While ”waiting” he might

exhaust his budget.

Theorem 7.3.1 (Simultaneous Composition with Budgets). Consider a simulta-

neous composition of m (λ, µ)-smooth mechanisms via conservative deviations and let

Ci = V1
i × . . .×Vm

i . If Vj
i are closed under cappings and the valuation vi : Xi → R+ of

each player across mechanisms is XOS − Ci, then the global mechanism is also (λ, µ)-

smooth via conservative deviations and XOS − Ci is also closed under capping.

Proof. The composability result is proved in a sequence of two lemmas: first

we prove that the conservative smoothness property of a mechanism composes

under XOS valuations and second we show that if the valuation space of each

component mechanism is closed under capping then the corresponding valu-

ation space of the composition mechanism is also closed under capping. The

latter is shown by proving a structural property of XOS valuations: a valua-

tion produced by capping an XOS valuation is also XOS and can be described

by component valuations that are cappings of the component valuations of the

XOS representation of the initial valuation.
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Lemma 7.3.2. The simultaneous composition of m (λ, µ)-smooth mechanisms via con-

servative deviations is also (λ, µ)-smooth via conservative deviations, when the valua-

tion vi : Xi → R+ of each player across mechanisms is XOS-Ci.

Proof. We need to show that the simultaneous composition is smooth in the

quasi-linear setting and that the deviations used to show smoothness satisfy

the property that every action ai in their support satisfies Equation (7.3).

The fact that the composition is smooth just stems from Theorem 4.2.2, since

each component mechanism is conservatively smooth and thereby smooth.

From the proof of Theorem 4.2.2 we know that for each action profile a the

deviation that is used in the smoothness argument is a randomized deviation

a∗
i (v) that consists of independent randomized deviations for each mechanism

j following the distribution of aj,∗
i (vj,∗), where vj,∗ is the valuation profile for

mechanism j where each player has valuation vj,∗i on X j
i and where v∗i is the

additively separable valuation that corresponds to allocation x∗
i according to

the XOS-Ci definition, i.e., vi(x∗
i ) =

∑
j v

j,∗
i (x∗

ij) and for all xi ∈ Xi: vi(xi) ≥∑
j v

j,∗
i (xj

i ).

Now by conservative smoothness of each component mechanism Mj we

know that for any action aj,∗i in the support of aj,∗
i (v∗j ):

max{pji : a
j
−i ∈ Aj

−i and pji ∈ SUPP(P j
i (a

j,∗
i , aj−i))} ≤ max

xj
i∈X

j
i

vj,∗i (xj
i ) (7.6)

For each mechanism Mj let x̂j
i be the allocation that corresponds to the maxi-

mizer on the right hand side of the above inequality.

By the fact that action spaces are independent across mechanisms it is easy
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to see that for any action ai:

max{
∑
j∈[m]

pji : a
j
−i ∈ Aj

−i and pji ∈ SUPP(P j
i (a

j,∗
i , aj−i))} =

∑
j∈[m]

max{pji : a
j
−i ∈ Aj

−i and pji ∈ SUPP(P j
i (a

j,∗
i , aj−i))} (7.7)

Any action ai in the support of the randomized deviation a∗
i (v) is going to

consist of actions aji in the support of the aj,∗
i (vj,∗). By Equations (7.6) and (7.7)

and by the fact that v∗i is part of the XOS representation of vi we get that for any

ai in the support of the smoothness deviation a∗
i (v):

max{
∑
j∈[m]

pji : a
j
−i ∈ Aj

−i and pji ∈ SUPP(P j
i (a

j,∗
i , aj−i))} ≤

∑
j

vj,∗i (x̂j
i )

≤ vi(x̂
1
i , . . . , x̂

m
i )

≤ max
xi∈Xi

vi(xi)

The latter completes the proof.

To complete the proof we show a property of capped XOS valuations across

mechanism outcomes:

Lemma 7.3.3. Suppose that a valuation v : Xi → R+ across m mechanisms is XOS

and can be represented by a set of additively separable valuations L, i.e. vi(xi) =

maxℓ∈L
∑

j∈[m] v
j,ℓ
i (xj

i ). Then the capped valuation v̂(xi) = min{v(xi), Bi} is also

XOS and can be expressed using valuations v̂j,ℓi : X j
i → R+ that are cappings of the

induced valuations vj,ℓi : X j
i → R+ of the initial valuation vi.

Proof. Since we focus on the valuation of a specific player i, we drop i from in-

dexing throughout the proof. Let L be the set of additively separable valuations
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that are used to express valuation v, i.e. ∀x ∈ X : v(x) = maxℓ∈L
∑

j v
ℓ
j(xj). Let

ℓ(x) be the additive valuation corresponding to outcome x, i.e.:

ℓ(x) = argmax
ℓ

∑
j

vℓj(xj)

Consider the set of additive valuations L̂ that contains ℓ(x) for each x ∈ X ,

potentially having multiple copies of the same additive valuation. The additive

valuation associated with each ℓ(x) ∈ L̂ is now defined as follows:

v̂
ℓ(x)
j (x̃j) = min

{
v
ℓ(x)
j (x̃j), v

ℓ(x)
j (xj),

(
Bi −

∑
k<j

v
ℓ(x)
k (xk)

)+}
(7.8)

Consider an outcome x̃. We will show that

v̂(x̃) = max
ℓ(x)∈L̂

∑
j

v̂
ℓ(x)
j (x̃j)

Case 1: If v(x̃) ≤ Bi then:

v̂(x̃) = v(x̃) =
∑
j

v
ℓ(x̃)
j (x̃j) ≤ Bi (7.9)

The last inequality implies that for all j:

∑
k≤j

v
ℓ(x̃)
k (x̃k) ≤ Bi

which in turn implies that

v
ℓ(x̃)
j (x̃j) ≤ Bi −

∑
k<j

v
ℓ(x̃)
k (x̃k)

Therefore, for all j:

v
ℓ(x̃)
j (x̃j) = v̂

ℓ(x̃)
j (x̃j)

Combining with Equation (7.9) we get:

v̂(x̃) =
∑
j

v̂
ℓ(x̃)
j (x̃j) (7.10)
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Now we need to show that for all ℓ(x) ∈ L̂: v(x̃) ≥
∑

j v̂
ℓ(x)
j (x̃j). Using the XOS

property of the initial representation of the uncapped value we have:

v̂(x̃) = v(x̃) ≥
∑
j

v
ℓ(x)
j (x̃j) ≥

∑
j

v̂
ℓ(x)
j (x̃j) (7.11)

By Equations (7.10) and (7.11) we get that:

v̂(x̃) = max
ℓ(x)∈L̂

∑
j

v̂
ℓ(x)
j (x̃j)

Case 2: If v(x̃) > Bi then v̂(x̃) = Bi. First we observe that by the definition of

the capped additive valuations v̂ℓ(x)j we know that for any ℓ(x) ∈ L̂:

∑
j

v̂
ℓ(x)
j (x̃j) = min

{
v
ℓ(x)
j (x̃j), v

ℓ(x)
j (xj),

(
Bi −

∑
k<j

v
ℓ(x)
k (xk)

)+}

≤
∑
j

min

{
v
ℓ(x)
j (xj),

(
Bi −

∑
k<j

v
ℓ(x)
k (xk)

)+}

≤ Bi = v̂(x̃)

In addition, since v(x̃) =
∑

j v
ℓ(x̃)
j (x̃j) > Bi, we know that:

∑
j

v̂
ℓ(x̃)
j (x̃j) =

∑
j

min

{
v
ℓ(x̃)
j (x̃j), v

ℓ(x̃)
j (x̃j),

(
Bi −

∑
k<j

v
ℓ(x̃)
k (x̃k)

)+}

=
∑
j

min

{
v
ℓ(x̃)
j (x̃j),

(
Bi −

∑
k<j

v
ℓ(x̃)
k (x̃k)

)+}

= Bi = v̂(x̃)

By the above two sets of equations we get again that:

v̂(x̃) = max
ℓ(x)∈L̂

∑
j

v̂
ℓ(x)
j (x̃j)

Thus we conclude that for any x̃, the above property holds and therefore

v̂
ℓ(x)
j for all ℓ(x) ∈ L̂ is an XOS representation of v̂ that uses only capped induced

valuations of the initial representation of v.
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The above two lemmas complete the proof of the theorem.

Combining Theorems 7.3.1 and 7.2.2 we get robust efficiency guarantees for

budget constrained bidders in the global mechanism.

7.4 Example: Simultaneous Item Auctions with Budgets

We revisit the game defined by simultaneous first or second price auctions with

bidders having XOS valuations over the items. Note the valuation space for

which smoothness of a first or a second price auction holds is any valuation of

the form vi(xi) = vi · xi for xi ∈ {0, 1} and for any vi ≥ 0. Such a valuation space

is obviously closed under capping.

Thus the results of this section imply that when the first price auction is used,

even if each player has a global private budget constraint on the payments that

she makes across items, every BAYES-CCE achieves at least 1 − 1
e

of the opti-

mal effective welfare. If second price auctions are used then every BAYES-CCE

that satisfies the no-overbidding assumption achieves 1
2

of the optimal effective

welfare.
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8

ALGORITHMIC CHARACTERIZATIONS OF SMOOTHNESS

The definition of a smooth mechanism is a descriptive one: i.e. it states

that a mechanism is smooth if each player has some “special” strategies that

guarantee him a good fraction of his contribution to the optimal welfare and at

a reasonable price. However, it does not imply some prescriptive definition: i.e.

What type of mechanisms are smooth for constant λ and µ?

In this chapter we address this question from an algorithmic point of view.

We give conditions on the algorithm that decides the allocation profile, such that

if paired with some appropriate pricing rule the resulting mechanism is smooth,

for some constant λ and µ. We show a strong connection to greedy algorithms.

The main result of this chapter is the following informal theorem:

Informal Theorem 5. If the algorithm that decides the allocation profile can be viewed

as a greedy optimization over a matroid feasibility constraint, then by coupling this

allocation with a first-price payment scheme, the resulting mechanism is
(
1
3
, 1
)
-smooth,

implying a BAYES-CCE-POA of at most 3.

We also provide results for the case of matroid intersections, showing that a

greedy algorithm subject to a matching constraint (intersection of two partition

matroids) can yield a
(
1
2
, 4
)
-smooth mechanism, while the optimal algorithm

can yield a
(

1
k+1

, 1
)
-smooth mechanism.
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8.1 Combinatorial Allocation Spaces and Greedy Mechanisms

Consider the following setting: the allocation space Xi of each player i consists

of the power set of a finite set of elements Ei which we will refer to as the ground

elements of player i. Moreover, we denote with E = E1 ∪ . . . ∪ En the set of all

ground elements. The outcome of the mechanism is a subset S ⊆ E of this

ground set and thereby the allocation of each player is Si = S ∪ Ei.

We assume that there is some feasibility constraint F ⊆ 2E defined on E ,

which defines which subsets S ⊆ E are feasible. The outcome of the mechanism

is restricted to fall within F . Each bidder i has a value wt for each element t ∈ Ei.

The interpretation of these values is that player receives value wt if element t is

in the outcome set of the mechanism, and the overall valuation of a player is

additive: vi(Si) =
∑

t∈Si
wt. We will also denote with wi = (wt)t∈Ei the vector of

weights of elements of a player i and with w = (wt)t∈E a value profile on all the

elements. The designer’s goal is to pick the feasible set with the highest total

(social) value.

Greedy Mechanism on Reported Bids. We consider the following mecha-

nism: from each player i, the auctioneer solicits bids bt for each t ∈ Ei, i.e.

Ai = R|Ei|
+ . We will denote with ai = (bt)t∈Ei an action of player i and with

b = (bt)t∈E a bid profile on all elements. The auctioneer runs the greedy matroid

algorithm on the reported bid profile to decide which elements of E are to be

picked, i.e. elements are considered in decreasing ordered of bids and each el-

ement is added to the outcome as long as it is feasible. Each player is asked to

pay his bid for each of his elements in his allocation.
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8.2 Smoothness for Matroid Feasibility Constraints

We now proceed to the main result of this chapter. Consider the case where

the feasibility constraint F , is the collection I of independent sets of a matroid

M = (E , I) (see Schrijver [63] for an extensive exposition of matroids), defined

on the ground set. We show that the greedy mechanism on reported bids is a(
1
3
, 1
)
-smooth mechanism.

To show the smoothness property we will heavily use an exchange property

of matroid feasibility constraints, proved by Lee et al. [44].

Lemma 8.2.1 (Generalized Rotta Exchange [44]). Let M = (E , I) be a matroid and

A,B ∈ I. Let A1, ..., An be subsets of A such that each element of A appears in exactly

q of them. Then there are sets B1, ..., Bm ⊆ B such that each element of B appears in at

most q of them, and for each i, Ai ∪ (B/ Bi) ∈ I.

Theorem 8.2.2. The greedy mechanism on reported bids is a (1
3
, 1)-smooth mecha-

nism when the valuation of each player on his ground set is additive. Hence, it has

BAYES-CCE-POA at most 3.

Proof. Consider a valuation profile v. Suppose that each player i deviates to

a∗i =
(
wt

α

)
t∈Ei

. Let S∗ be the optimal base for valuation profile v and S∗
i = S∗∩Ei,

be player i’s allocation in the optimal base.

Consider an action profile a, where ai = (bt)t∈Ei , and let S, be the selected set

under action profile a. Let a′ = (a∗i , a−i), be the induced action profile and S ′ be

the set allocated after the deviation and S ′
i = S ′ ∩ Ei.

We denote with W (S, a) =
∑

t∈S bt, the. By Lemma 8.2.1 for q = 1, we have

that there exist disjoint sets T1, . . . , Tn of S, such that Q = S∗
i ∪ (S − Ti) ∈ I.
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By optimality of the greedy algorithm on the reported bid profile and since Q is

feasible, we have:∑
t∈S′

i

wt

α
+

∑
t∈S′−S′

i

bt ≥
∑
t∈S∗

i

wt

α
+

∑
t∈S−Ti−Ei

bt +
∑

t∈(S∩Ei)−Ti

wt

α

≥
∑
t∈S∗

i

wt

α
+

∑
t∈S−Ti−Ei

bt

By optimality of the algorithm on the initial bid profile we have:∑
t∈S

bt = W (S, a) ≥ W (S ′, a) =
∑
t∈S′

bt ≥
∑

t∈S′−S′
i

bt

Combining we get: ∑
t∈S′

i

wt

α
≥
∑
t∈S∗

i

wt

α
+

∑
t∈S−Ti−Ei

bt −
∑
t∈S

bt

=
∑
t∈S∗

i

wt

α
−

∑
t∈S∩(Ti∪Ei)

bt

≥
∑
t∈S∗

i

wt

α
−
∑

t∈S∩Ti

bt −
∑

t∈S∩Ei

bt

Observe that by definition the utility of the player under the deviation is:

UM
i (a∗i , a−i; vi) =

(
1− 1

α

)∑
t∈S′

i
wt. Using the previous inequalities we can lower

bound his utility as follows:

UM
i (a∗i , a−i; vi) =

(
1− 1

α

)∑
t∈S′

i

wt

≥
(
1− 1

α

)∑
t∈S∗

i

wt −
(
1− 1

α

)
· α ·

( ∑
t∈S∩Ti

bt +
∑

t∈S∩Ei

bt

)
Summing over all players:∑
i

UM
i (a∗i , a−i; vi) ≥

(
1− 1

α

)
OPT(v)−

(
1− 1

α

)
· α ·

(∑
i

∑
t∈S∩Ti

bt +
∑
i

∑
t∈S∩Ei

bt

)

≥
(
1− 1

α

)
OPT(v)− (α− 1) · 2

∑
t∈S

bt

where the last inequality follows, since Ti are disjoint sets and thereby∑
i

∑
t∈S∩Ti

bt ≤
∑

t∈S bt. By setting α = 1
2
+ 1 = 3

2
, yields the result.
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By Lemma 4.2.3, we also get that the mechanism is
(
1
3
, 1
)
-smooth even when

players have XOS valuations over their ground elements and not additive.

Corollary 8.2.3. The greedy mechanism on reported bids is a (1
3
, 1)-smooth mechanism

when the valuation of each player on his ground set is XOS.

8.2.1 Action Space Restrictions and Extension to Polymatroids

We examine the generalization of the above theorem to the setting of polyma-

troids. Specifically, in a polymatroid setting, each element t ∈ Ei corresponds to

a divisible good. Subsequently the allocation Xi = R|Ei|
+ of a player is the vector

of allocated units from each element t ∈ Ei: xi = (xt)t∈Ei . The mechanism de-

cides on a vector of allocated units of each element: x = (xt)t∈E ∈ R|E|
+ and this

vector has to satisfy a polymatroid constraint, i.e. for any S ⊆ E ,
∑

t∈S xt ≤ f(S),

and f(·) is a submodular function with f(∅) = 0. We will assume that f(·) is a

rational function.

The valuation of a player is linear across elements and is homogeneous for

each element, i.e. vi(xi) =
∑

t∈Ei wt · xt. In this setting, we analyze the following

mechanism:

Mechanism 3: Polymatroid mechanism.

1 From each player i solicit bids bt for each t ∈ Ei. Denote with ai = (bt)t∈Ei and
b = (bt)t∈E

2 Run the greedy polymatroid algorithm with weights b to decide the final
allocation x, i.e. at each iteration pick element t from remaining with maximum
bt and increase xt until some polymatroid constraint becomes tight. Then remove
t from consideration.

3 Charge each player i,
∑

t∈Ei bt · xt.
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We show that the polymatroid mechanism is also
(
1
3
, 1
)
-smooth.

Theorem 8.2.4. The polymatroid mechanism is
(
1
3
, 1
)
-smooth.

Proof. It is well-known (see e.g. Bikhchandani et al. [10] or Schrijver [63]) that

for a sufficiently small discretization of the allocation space in δ units, if we con-

sider the extended ground set where each element t, is duplicated f({t})
δ

times,

then the feasibility constraint implied by the polymatroid on these extended

element set is a matroid. Moreover, if we denote with (t, k) the k-th copy of

element t, then if we assign a weight of bt · δ to each element (t, k), then as the

discretization goes to zero, the greedy algorithm on the matroid corresponds

to the greedy algorithm on the polymatroid. Subsequently the payment of the

polymatroid mechanism coincides with the payment of the extended matroid

mechanism, when run on bids bt · δ for each copy of t. Last if we denote with

w′
t = wt · δ, then the value of a player for an allocation of discretized units, cor-

responds to the value of a player in the discretized matroid that has value w′
t for

each copy of element t.

Thus we can view the polymatroid mechanism as the limit of a matroid

mechanism where the players are restricted to submit the same bid on all copies

of the same element. If we show smoothness of this restricted bid mechanism,

then the smoothness of the polymatroid mechanism will follow by taking the

limit of the discretization to zero.

In order to show smoothness, the only thing we need to observe is that the

deviations used in the smoothness proof of the matroid mechanism (Theorem

8.2.2) are simply scaled versions of the valuation of a player. Thus it is easy to

see, that if such scaled versions are allowed in the restricted bid space, then the
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same proof shows smoothness of the matroid mechanism under the restricted

bid space. This is formalized in the following observation.

Observation 8.2.5. Suppose that a mechanism M is (λ, µ)-smooth. Consider the

mechanism M′, which is identical to M, with the exception that the action space of

each player is restricted to some subset A′
i ⊂ Ai. If every action in the support of the

deviations a∗
i (v) used to show smoothness of M, fall into action space A′

i, then M′ is

also (λ, µ)-smooth.

Since we assumed that the value of a player is additive and homogeneous,

observe that the weight w′
t of a player for each element of the discretized ma-

troid is identical for all copies of element t. Thus the smoothness deviations of

Theorem 8.2.2 would correspond to bidding w′
t

α
for each element of t, which is

an action that belongs to the restricted strategy space. Thus the matroid mecha-

nism is smooth even under this restricted space, as long as the value of a player

for all copies of an element is identical. Hence, the theorem follows.

Submodular valuations. Suppose that instead of additive and homogeneous

valuations, each player has a value vi(xi) that is monotone submodular on the

euclidean lattice defined on R|Ei|
+ . Then by Theorem 4.3.16, we know that it can

be expressed as a maximum over additively separable valuations such that each

valuation is a capped marginal valuation and hence is a concave valuation on

R+: i.e.

vi(xi) = sup
ℓ∈L

∑
t∈Ei

vt(xt)

with vt(·) being an increasing concave function. Moreover, it is easy to see

that every increasing concave function can be expressed as the supremum

of functions that are linear up to a point and then constant: i.e. vt(xt) =
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supℓ∈L w
ℓ
t min{xt, q

ℓ
t}. Thus we can conclude that any submodular valuation can

be written as:

vi(xi) = sup
ℓ∈L

∑
t∈Ei

wℓ
t ·min{xt, q

ℓ
t}

for some index set L. Thus in order to prove smoothness of the polymatroid

mechanism, by Lemma 4.2.3 it suffices to show smoothness for the following

much simpler class of valuations:

vi(xi) =
∑
t∈Ei

wt ·min{xt, qt} (8.1)

However, we readily observe that if we consider an arbitrarily small dis-

cretization of the polymatroid then the valuations of the players for the copies

of an element t, will not be identical. Instead, if we consider some arbitrary

order of the copies, then the player will have a value of wt · δ for the first qt
δ

copies and zero value for subsequent copies. Thus to render the polymatroid

mechanism smooth, we need to allow for the player to express such valuations

for the copies of the same element. To achieve this we introduce the following

modification of the polymatroid mechanism.

Mechanism 4: Polymatroid mechanism with capacities.

1 From each player i solicit a bid bt and a capacity qt for each t ∈ Ei. Denote with
ai = (bt)t∈Ei and b = (bt)t∈E and q = (qt)t∈E

2 Run the greedy polymatroid algorithm with weights b and capacities qt to decide
the final allocation x, i.e. at each iteration pick element t from remaining with
maximum bt and increase xt until some polymatroid constraint becomes tight or
xt reaches qt. Then remove t from consideration.

3 Charge each player i,
∑

t∈Ei bt · xt.

Under this mechanism the algorithm allows the player to submit capacities

to the mechanism. By doing so, if we consider an arbitrarily small discretization

of the polymatroid, then the player can submit a valuation that is wt·δ
α

, for the
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first qt
δ

copies of element t and zero for the remaining, by simply submitting a

weight of wt

α
and a capacity of qt, to the polymatroid mechanism with capacities.

8.3 Smoothness for Matroid Intersections

We now turn to more complex feasibility constraints. We start by showing that

the greedy algorithm leads to a smooth mechanism via swap deviations, for

constant λ and µ, even when the feasibility constraint corresponds to a matching

constraint: i.e. each ground element t ∈ E corresponds to an edge (ut, vt) in a

bipartite graph (U, V, E). This is a special case of an intersection of two partition

matroids (see [63]).

Then we turn to the intersection of arbitrary k matroids and we show that

running the optimal algorithm (which in general is an NP-hard problem) rather

than the greedy algorithm yields a smooth mechanism, whose parameters λ

and µ degrade with k. We conjecture that similar behavior holds for the greedy

algorithm, but we leave it as an open question for future research.

Conjecture 8.3.1. BAYES-CCE-POA is O(k) for the greedy mechanism when the fea-

sibility constraint is the intersection of k matroids.

8.3.1 Matchings and Greedy Allocation

We present the smoothness theorem for matching feasibility constraints. Unlike

the matroid setting where we used the existing machinery of Generalized Rota

exchanges to create a charging argument, in this setting there is no analogous
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machinery for the greedy algorithm. Hence, we construct a charging argument

that allows us to show that from a deviation either a player gets high utility

or some part of the revenue at equilibrium is high. Moreover, each part of the

equilibrium revenue is not charged more than twice by our charging scheme.

Theorem 8.3.2. The greedy mechanism is
(
1
2
, 4
)
-smooth via swap deviations when

valuations are additive and the feasibility constraint is a matching constraint.

Proof. Consider a valuation profile v and an action profile a with corresponding

bid profile b and let S be the set output by the greedy algorithm on action profile

a. Suppose that each player i deviates to bidding the pointwise maximum of

ai and a′i =
(
wt

2

)
t∈S∗

i
. This is a valid swap deviation according to definition

5.1.1. Let a′ = (a′i, a−i) be the action profile when player i deviates and b′ the

corresponding bid profile. Let S ′ be the set allocated after the deviation and let

S ′
i = S ′ ∩ Ei.

Write Ai = S∗
i ∩ S ′

i and Ui = S∗
i − S ′

i. (So Ai is the set of optimal items for

agent i that are allocated under S ′, and Ui are those that are unallocated). We

have:

UM
i (a′i, a−i; vi) ≥

∑
t∈Ai

(
wt −max

{wt

2
, bt

})
≥ 1

2

∑
t∈Ai

wt−
∑
t∈Ai

bt ≥
1

2

∑
t∈Ai

wt−
∑
t∈S∗

i

bt.

So ∑
i

UM
i (a′i, a−i; vi) ≥

1

2

∑
i

∑
t∈Ai

wt −
∑
i

∑
t∈S∗

i

bt =
1

2

∑
i

∑
t∈Ai

wt −
∑
t∈S∗

bt.

Moreover, since S∗ is a feasible allocation and S is the outcome of the greedy

algorithm on matchings, then by the well known 2-approximation guarantee of

the algorithm:
∑

t∈S∗ bt ≤ 2
∑

t∈S bt. Yielding:∑
i

UM
i (a′i, a−i; vi) ≥

1

2

∑
i

∑
t∈Ai

wt − 2
∑
t∈S

bt
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We claim (proved below) that there exists a mapping ϕ : (∪iUi) → S such

that bϕ(t) ≥ 1
2
wt for all t ∈ (∪iUi), and moreover |ϕ−1(x)| ≤ 2 for all x ∈ Sg. This

will imply that 2
∑

x∈S bx ≥ 1
2

∑
i

∑
t∈Ui

wt. We will then conclude that

∑
i

UM
i (a′i, a−i; vi) ≥

1

2

∑
i

∑
t∈Ai

wt − 2
∑
x∈S

bx +
1

2

∑
i

∑
t∈Ui

wt − 2
∑
x∈S

bx

=
1

2
OPT(v)− 4

∑
x∈S

bx =
1

2
OPT(v)− 4RM(a),

establishing smoothness.

Construction of charging mapping. It remains to construct the promised

mapping ϕ. We first introduce the notion of an exchange graph for sets that

are in the intersection of two matroids M1 = (E , I1) and M2 = (E , I2):

Definition 8.3.3 (Exchange Graph). For a set S ⊂ I1 ∩ I2, the exchange graph for S

is a directed bipartite graph G(S) with node sets S and E − S such that: for v ∈ S and

u ∈ E\S, we have edge (v, u) if S − v + u ∈ I1, and edge (u, v) if S − v + u ∈ I2.

In a matching, a set of elements is in an independent set of matroid M1 if no

two elements have the same left endpoint in the bipartite graph (U, V, E), while

it is an independent set of matroid M2, if no two elements have the same right

endpoint. Then a feasible set of the mechanism can be viewed as the intersection

of these two matroids. We now provide some extra properties of the exchange

graph in the special case of a matching feasibility constraint.

Observation 8.3.4. Given S ∈ I1 ∩ I2 and t ∈ E − S, there is at most one s ∈ S such

that (s, t) ∈ G(S) and at most one s′ ∈ S such that (t, s′) ∈ G(S).

Proof. Since we are in a matching setting, (s, t) ∈ G(S) means s and t share

an endpoint (say a left endpoint). Since S is a matching, t cannot share a left
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endpoint with multiple elements of S. Similarly, t can share a right endpoint

with at most one s′ ∈ S, hence can have an edge (t, s′) with at most one s′ ∈ S.

Observation 8.3.5. Given S ∈ I1 ∩ I2, T ∈ I1 ∩ I2, and s ∈ S, there is at most one

t ∈ T − S such that (s, t) ∈ G(S) and at most one t′ ∈ T − S such that (t′, s) ∈ G(S).

Proof. Similar to the previous observation.

Next we argue about the structure of S ′, by way of G(S). We remind that S is

the greedy outcome under bid profile b and S ′ is the greedy outcome under bid

profile b′ produced by action profile a′ = (a′i, a−i). We also remind that the bids

in b′ are the same as the bids in b with only some elements T ∈ I1 ∩ I2 having an

increased bid.

Lemma 8.3.6. There exist paths π1, . . . , πℓ in G(S) such that:

1. in each path, the bids b′t on the nodes are either monotonically increasing or mono-

tonically decreasing,

2. in each path, the node with maximum bid from b′ is the unique element of T − S

on the path,

3. the paths are disjoint, except that each t ∈ T could be the maximum-b′ element for

at most one increasing (in b′) path and one decreasing (in b′) path, and

4. S ′ is precisely S with all nodes from S ∩ (∪iπi) removed and all nodes from S −

(∪iπi) added.

Proof. Let Hk be the top k elements from E with respect to bids B′ (breaking ties

in the same manner as the greedy algorithm). We will prove the stronger result
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that, for each k, our lemma holds for the sets S∩Hk and S ′∩Hk (in item number

4). The proof will be by induction on k. Taking k = |E| will then give the stated

lemma.

For the base case k = 1, let x be the single element in H1. If x ̸∈ T then bx = b′x

and hence S∩H1 = {x} = S ′∩H1 so the result holds trivially. If x ∈ T and x ∈ S

then the result again holds trivially. If x ∈ T but x ̸∈ S, then we have S ∩H1 = ∅

but S ′ ∩H1 = {x}. In this case, take path P1 to be the singleton node {x} to get

the desired result.

Now consider k > 1. By induction, there are paths π1, . . . , πℓ with the re-

quired properties for S ∩ Hk−1 and S ′ ∩ Hk−1. Let x be the single element in

Hk −Hk−1. If x is in both S and S ′, or in neither, then paths π1, . . . , πℓ satisfy the

required properties.

Suppose x ∈ S but x ̸∈ S ′. Then, since x ̸∈ S ′, there exists some element

y ∈ S ′ − S such that b′y ≥ b′x and either (x, y) or (y, x) is in G(S). Assume

(x, y) ∈ G(S), as the other case is symmetric. Since y is considered before x

by the greedy algorithm on a′, we have y ∈ Hk−1. So y must lie on a path

πi. From our earlier observation, there can be no x′ ∈ S, x′ ̸= x, such that

(x′, y) ∈ G(S). Thus, either y is the maximum-a′ element of πi, πi is decreasing

and no increasing path ending at y, or else y is the endpoint of πi with lowest bid

a′. In either case, extending πi by appending x retains the required properties of

our paths.

Finally, suppose x ̸∈ S but x ∈ S ′. If x ∈ T then create a new path containing

only the singleton x, and we are done. Otherwise, there must be some element

y ∈ S − S ′ such that by ≥ bx (and hence b′y ≥ b′x, since x ̸∈ T ) and either (x, y)
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or (y, x) is in G(S). Assume (x, y) ∈ G(S), as the other case is symmetric. This

case is now similar to the previous case. Since y is considered before x by the

greedy algorithm on a, and hence on a′, we have y ∈ Hk−1. So y must lie on a

path πi. From our earlier observation, there can be no x′ ∈ S ′, x′ ̸= x, such that

(x′, y) ∈ G(S) (since S ′ is in I1 ∩ I2). Thus y is an endpoint of a path πi. Since

it cannot be the maximum-a′ endpoint of the path, it is the endpoint of πi with

lowest-a′ bid. In either case, extending πi by appending x retains the required

properties of our paths.

So, in all cases, the required paths exist for this value of k. The result follows

by induction.

Finally, we argue about properties of elements not allocated by the greedy

algorithm when their bids are increased. As before, fix a bid profile b and greedy

outcome S for b, and suppose bid profile b′ is b with increased bids on some set

of elements T ∈ I1 ∩ I2. Let S ′ be the greedy outcome for b′.

Lemma 8.3.7. Suppose t ∈ T − S ′. Then t is adjacent (in G(S)) to some x ∈ S such

that either

1. bx ≥ b′t, or

2. x ̸∈ S ′ and x lies on a path πi (from the previous lemma) with a neighbor y ̸∈ T

such that b′y ≥ b′t, or

3. x ̸∈ S ′ and x has a neighbor y ̸∈ T in G(S) such that y is the endpoint of a path

πi (from the previous lemma) and b′y ≥ b′t. Moreover, the path πi is increasing if

(x, t) ∈ G(S) and decreasing if (t, x) ∈ G(S).

Proof. If t = (α, β) ̸∈ S ′, there must exist some y ∈ S ′ with b′z ≥ b′t and y conflict-
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ing (i.e., shares a vertex with) with t (wlog let it be vertex α). If y ∈ S then take

x = y and we’re done. Let’s assume that this is not the case and Condition 1 is

not true.

Then, we have y ∈ S ′ − S, so our previous lemma states that z lies on a path

πi with the appropriate properties. Since y shares vertex α with t, we can take

x to be the element of S that also shares this vertex. Then (x, y) and (x, t) are

in G(S), and moreover x ̸∈ S ′. If y is the endpoint of path πi then we are done,

since Condition 3 is satisfied.

Otherwise, it must be that the path πi continues. We need to argue that the

path is increasing and that (x, y) is part of the path. If the path was decreasing

then it means that there exists some edge (x′, y) such that b′x′ ≥ b′y. Thus x′ shares

vertex α with y and hence with t. Moreover, for this reason x′ ̸∈ T and therefore

b′x = bx. Thus condition 1 is satisfied, with x = x′, a contradiction to our first

assumption. So it must be that the path is increasing and hence an edge (r, y) is

part of the path. But from Observation 8.3.4 the only such r is x. Thus Condition

2 is satisfied.

We’re now ready to define our promised mapping ϕ : ∪iUi → S. Take T = S∗
i

in the above Lemmas. Note Ui = T − S ′. For each t ∈ T − S ′, if Condition 1 of

Lemma 8.3.7 is satisfied then take ϕ(t) = x, for the x in the condition.

If Conditions 2 or 3 of Lemma 8.3.7 are satisfied then we first create a tem-

porary association, based on which we subsequently construct the mapping. If

Condition 2 of Lemma 8.3.7 is satisfied then we associate t with the x in the con-

dition, whilst if Condition 3 is satisfied then we associate t with the endpoint y.

Then each x ∈ S is associated with only one t, since each such x lies on a unique

158



path, and the neighbor from T with which it’s associated is determined by the

direction of that path. Moreover, each endpoint of a path y is associated with

only one other note t, since y lies on a unique path and the node t with which it

is associated is determined by the monotonicity of the path.

Now define ϕ(t) as follows: starting from the node x associated with t, follow

the path in the direction of increasing b′ until reaching some x′ ∈ S that is either

(a) associated with some other node t′ ∈ T , or (b) the last element of S along

the path. In either case, we will set ϕ(t) = x′. Note that b′x′ ≥ b′t, since by

construction b′x′ ≥ b′y ≥ b′t. Moreover, x′ ̸∈ T by the observation that each such x′

is adjacent with some x ∈ T in graph G(S) and thereby is conflicting with some

x ∈ T . Thus bx = b′x ≥ b′t as required.

We must argue that this mapping ϕ satisfies the required properties. We

already have that bϕ(t) ≥ b′t ≥ wt

2
for each t. We next argue that |ϕ−1(x)| ≤ 2 for

each x ∈ S. This follows because each x is mapped-to at most once for each of

its (two) adjacent elements t ∈ S∗. If bx is greater than b′t, then x is mapped-to

directly from t. If bx is less than b′t then x can potentially be mapped to via an

association with t along the (at most one) path containing x, but only by one

other element t′ (i.e., corresponding to the next-lowest element along that path

that has an association).

The mapping ϕ therefore satisfies the required properties, completing the

proof of Theorem 8.3.2.

159



8.3.2 Intersections of Matroids and Optimal Algorithm

We now analyze the mechanism where instead of running the greedy algorithm

over the reported bid profile, we run the optimal algorithm so as to decide the

outcome set. Then each player is charged his bid for his allocated set. We refer

to this mechanism as the optimal mechanism with first prices. We state the

theorem for additive valuations, but it is easy to observe that by Lemma 4.2.3

the theorem extends to XOS valuations on the elements.

Theorem 8.3.8. The optimal mechanism with first prices is a
(

1
k+2

, 1
)
-smooth mecha-

nism when valuations are additive and the feasibility constraint on the ground set is the

intersection of k matroids. Thus the BAYES-CCE-POA is at most k + 2.

Proof. Consider a valuation profile v. Suppose that each player i deviates to

a∗i =
(
wt

α

)
t∈Ei

. Let S∗ be the optimal base for valuation profile v and S∗
i = S∗∩Ei,

be player i’s allocation in the optimal base.

Consider an action profile a, where ai = (bt)t∈Ei , and let S, be the selected set

under action profile a. Let a′ = (a∗i , a−i), be the induced action profile and S ′ be

the set allocated after the deviation and S ′
i = S ′ ∩ Ei.

Suppose that the feasibility constraint on the elements of the ground set is

the intersection of k matroid constraints, M1, . . . , Mk. By Lemma 8.2.1 applied to

every matroid Mt = (E , It), we have that there exist disjoint sets T t
1, . . . , T

t
n such

that S∗
i ∪(S−T t

i ) ∈ It. Thus it is easy to see that: Q = S∗
i ∪
(
S − ∪k

t=1T
t
i

)
∈ ∩k

t=1It

is a feasible set. Let Ti = ∪k
t=1T

t
i , observe that since for each t ∈ [k], T t

1, . . . , T
t
n,

are disjoint sets, an element appears in at most k of the sets T1, . . . , Tn.

The rest of the proof follows along similar lines as in theorem 8.2.2. By the
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optimality of the algorithm on the reported bid profile and since Q = S∗
i ∪

(S − Ti) is feasible, we have:

∑
t∈S′

i

wt

α
+

∑
t∈S′−S′

i

bt ≥
∑
t∈S∗

i

wt

α
+

∑
t∈S−Ti−Ei

bt +
∑

t∈(S∩Ei)−Ti

wt

α

≥
∑
t∈S∗

i

wt

α
+

∑
t∈S−Ti−Ei

bt

By optimality of the algorithm on the initial bid profile we have:

∑
t∈S

bt = W (S, a) ≥ W (S ′, a) =
∑
t∈S′

bt ≥
∑

t∈S′−S′
i

bt

Combining we get:

∑
t∈S′

i

wt

α
≥
∑
t∈S∗

i

wt

α
+

∑
t∈S−Ti−Ei

bt −
∑
t∈S

bt

=
∑
t∈S∗

i

wt

α
−

∑
t∈S∩(Ti∪Ei)

bt

≥
∑
t∈S∗

i

wt

α
−
∑

t∈S∩Ti

bt −
∑

t∈S∩Ei

bt

Observe that by definition the utility of the player under the deviation is:

UM
i (a∗i , a−i; vi) =

(
1− 1

α

)∑
t∈S′

i
wt. Using the previous inequalities we can lower

bound his utility as follows:

UM
i (a∗i , a−i; vi) =

(
1− 1

α

)∑
t∈S′

i

wt

≥
(
1− 1

α

)∑
t∈S∗

i

wt −
(
1− 1

α

)
· α ·

( ∑
t∈S∩Ti

bt +
∑

t∈S∩Ei

bt

)

Summing over all players:

∑
i

UM
i (a∗i , a−i; vi) ≥

(
1− 1

α

)
OPT(v)−

(
1− 1

α

)
· α ·

(∑
i

∑
t∈S∩Ti

bt +
∑
i

∑
t∈S∩Ei

bt

)

≥
(
1− 1

α

)
OPT(v)− (α− 1) · (k + 1)

∑
t∈S

bt
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where the last inequality follows, since an element t ∈ E appears in at most

k of the sets T1, . . . , Tn and thereby
∑

i

∑
t∈S∩Ti

bt ≤ k
∑

t∈S bt. By setting α =

1
k+1

+ 1 = k+2
k+1

, yields the result.
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9

SMOOTHNESS IN LARGE MARKETS

... while there may be asymmetry in agents’ information, it is relatively unim-

portant for the problem at hand because any single agent has only a small

amount of information not known by the other agents.

– Gul and Postlewaite, 1992, p. 1273

As a market grows larger in size, the effect of each individual player is neg-

ligible. Thereby it is natural to expect that the effects of strategic manipulations

by each individual player will be alleviated and the worst-case inefficiency of

equilibrium outcomes will improve.

In this chapter we propose a formalization of the above intuition via the

smoothness framework. We define the notion of smoothness in the limit: a

mechanism might not be (λ, µ)-smooth for any finite size of the market but becomes

(λ, µ)-smooth in the limit of an infinitely large market.

The limit smoothness framework also provides worst-case efficiency guar-

antees for any finite market size, i.e. if a mechanism is (λ, µ)-smooth in the

limit, then for any ϵ, there exists a finite market size, such that the mechanism

is
(

λ
1+ϵ

, µ
)
-smooth and therefore for sufficiently large markets the BAYES-CCE-

POA is at most (1 + ϵ)max{1,µ}
λ

.

Via the limit smoothness framework we show a very general full efficiency

result for simultaneous uniform price auctions in a market with many goods

and combinatorial valuations. Specifically, we show that if the number of play-

ers and the number of units of each good grows and each player doesn’t arrive
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in the market with some small negligible probability and has finite demand

from each good, then the resulting mechanism is (1, 1)-smooth in the limit, and

therefore any BAYES-CCE converges to a fully efficient allocation. Our results

heavily generalize on previous work on efficiency in large markets [64], that

only considers a single good and decreasing marginal valuations, whilst not

providing any approximation guarantee for finite market sizes.

9.1 Smoothness in the Limit

To define the notion of smoothness in the limit, we need to consider a sequence

of mechanisms Mn = (An, Xn, P n) defined on a sequence of mechanism design

settings (n,X n,Vn) and a sequence of independent valuation distributions Fn.

Normally this would be the same mechanism adapted to a growing number of

players or a growing number of resources. For instance it could be a single item

first price auction where only the number of players n is changing. However, the

number of items can also be growing as a function of the number of players n.

All these variances are captured in the above general formulation of a sequence

of mechanisms for each market size n.

For shorter notation we will use Un
i and Rn instead of UMn

i and RMn for the

utility and the revenue under mechanism Mn.

Definition 9.1.1 (Smooth Mechanism in the Limit). A sequence of mechanisms Mn

is (λ, µ)-smooth in the limit if for each market size n and for each valuation profile vn,

there exists a deviation sequence a∗,ni (vn) for each i ∈ [n], such that for any action profile

sequence an ∈ An:

lim sup
n→∞

λOPTn(vn)∑
i U

n
i (a

∗,n
i , an−i; vi) + µRn(an)

≤ 1 (9.1)
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If a sequence of mechanisms is (λ, µ)-smooth in the limit, then the price of an-

archy must converge to the limit price of anarchy as is formalized below. More-

over, it implies that for any sufficiently large but finite market size the price of

anarchy of all BAYES-CCE is at most 1 + ϵ away from the limit price of anarchy.

Theorem 9.1.2. If a mechanism is (λ, µ)-smooth in the limit then

lim sup
n→∞

BAYES-CCE-POAn ≤ max{µ, 1}
λ

,

i.e. for any ϵ there exists a market size n(ϵ) such that for any n ≥ n(ϵ), every

Bayes coarse correlated equilibrium of the mechanism Mn with value distributions Fn

achieves at least (1 + ϵ) λ
max{1,µ} of the expected optimal welfare.

Proof. By (λ, µ)-smoothness in the limit, we have that for any ϵ there exists a

market size n(ϵ) such that for any n ≥ n(ϵ):

λOPTn(vn)∑
i U

n
i (a

∗,n
i , an−i; vi) + µRn(an)

≤ 1 + ϵ

Since, the action sequence an is arbitrary, the above holds for any action profile

an. Thus by rearranging, we get that for any such n, mechanism Mn is a
(

λ
1+ϵ

, µ
)
-

smooth mechanism. Therefore by Theorem 3.1.2, BAYES-CCE-POAn ≤ (1 +

ϵ)max{1,µ}
λ

.

9.2 Simultaneous Uniform Price Auctions with Noisy Arrival

Consider a setting with n bidders and m goods. There are kj(n) units of good

j ∈ [m]. Each player i ∈ [n] has a value vi : Nm → [ρ,H], that assigns a value
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for each possible allocation of units of each good. We will assume that the val-

ues are bounded away from zero and are bounded. We will also assume that

the players have value for up to some number of r units of each good, and r

remains constant independent of n as the market grows. More formally, the

value of a player satisfies the following condition: for any allocation vector

xi = (xi1, . . . , xim), where xij denotes the units of good j allocated:

vi(xi) = vi(min{xi, r}), (9.2)

where min{xi, r} is the coordinate-wise minimum of xij and r. We will refer to

such functions as r-demand valuations.

Simultaneous Uniform Price. The units of each good j ∈ [m] are simultane-

ously and independently sold via the means of a uniform price auction: bidders

submit bids bji,1 ≥ . . . ≥ bji,r. Then the bids of good j are ordered in decreasing

order and the first kj(n) bids, each wins a unit. Thus for a player to win xj units

of good j it has to be that his highest xj bids are in the top kj(n)) bids among

all players. Then each player is charged the highest losing bid for each unit of

good j that he is allocated, i.e. if we denote with θjt (b
j) the t-th highest bid after

we order the bids of all players, then each player pays θjkj(n)+1(b
j) for each unit.

We will denote the above mechanism with Mn = (An, Xn, P n) and the above

mechanism design setting with (n,X n,Vn).

Random Arrival. We will also assume that each player doesn’t arrive in the

market with probability δ. In that case we can think of the player as submitting

an all zero bid vector on all the auctions and having zero valuation for any allo-

cated units. Moreover, when a player decides his bid he does not know which
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player arrived. We will even assume (wlog) that he doesn’t know whether

he will arrive too when deciding his bids and in the end he submits his pre-

determined bids conditional on arriving.

Endogenous Noise Mechanism. We will view the simultaneous uniform price

auction with random arrivals as an ex-ante mechanism Mn
δ , where the noise is

endogenized in the rules of the mechanism and then we will show that mecha-

nism Mn
δ is (1, 1)-smooth in the limit. We will refer to this mechanism as simul-

taneous uniform price auction with endogenous δ-noisy demand.

Let zi be an indicator random variable that designates whether a player ar-

rived in the auction, i.e. zi is an independent Bernoulli trial with success prob-

ability 1− δ. The action space of mechanism Mn
δ is the same as mechanism M,

i.e. An
i , Rm·r

+ . The allocation space of each player is the space of functions from

an arrival vector z to an allocation of the simultaneous uniform price auction,

i.e. X δ,n
i , {0, 1}n → X n

i . Let xn
i (b, z) = Xn

i (b · z), where b · z = (b1 · z1, . . . , bn · zn).

Then the allocation and payment function of mechanism Mδ,n is:

Xδ,n
i (b) = xn

i (b, ·) (9.3)

P δ,n
i (b) = Ez [P

n
i (b · z)] (9.4)

The value of a player for an allocation xδ
i ∈ X δ,n

i is the expected value under the

random arrival vector:

vδi (x
δ
i ) = Ez

[
zi · vi

(
xδ
i (z)

)]
(9.5)

The utility of each player from the mechanism Mn
δ , denoted U δ,n

i for conciseness,

under some action profile b is:

U δ,n
i (b; vi) = vδi (x

δ
i )− P δ,n

i (b) = Ez [zi · vi (Xn
i (b · z))− P n

i (b · z)] (9.6)

167



Under the above formulation, the optimal allocation of the ex-ante mecha-

nism is the expected ex-post optimal allocation over the random arrivals:

OPTδ,n(vn) = Ez [OPTn(vn · z)] ,

where v · z = (v1 · z1, . . . , vn · zn).

Thus mechanism Mn
δ falls into our framework and in the next section we

will show that it is (1, 1)-smooth in the limit.

9.2.1 Full Efficiency in the Limit

Theorem 9.2.1. Simultaneous uniform price auctions with endogenous δ-noisy de-

mand are (1, 1)-smooth in the limit when bidders have monotone r-demand combinato-

rial valuation over goods, such that vi(·) ≥ ρ > 0, for some ρ and when the supply of

each good kj(n) goes to infinity as the market grows.

We will prove the theorem in a sequence of three Lemmas. First we show

that for any market size n, mechanism Mn
δ satisfies an almost (1, 1)-smoothness

property where instead of revenue on the right hand side of the smoothness

definition we have replaced it with a sum of threshold bids. Then in the second

Lemma we use the results of Swinkels [64] to show that these threshold bids

will converge to the revenue of the auction in the limit. Together with our minor

technical assumptions on bidder valuations, this will allow us to conclude the

theorem.

Lemma 9.2.2. For a fixed market size n, each player i, for any monotone valuation vi

and for any allocation xi ∈ [1, .., r]m, player i has a deviation b′i(xi) such that for any
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bid profile bn:

U δ,n
i (b′i(xi), b

n
−i; vi) ≥ Ez

zi ·
vi(xi)−

∑
j∈[m]

xij · θjkj(n)−r+1(b
j,n
−i · z−i)

 (9.7)

Proof. Since the market size is fixed, we will drop the index on n. Thus we have

kj units of each good and the bid profile b.

Consider the deviation b′i(xi) where player i deviates to bidding vi(xi) on the

first xij marginal bids on each uniform price auction j ∈ [m].

Let θj,t(b · z) be the t-th highest arriving bid at uniform price auction j. We

will show that the utility of a player under the deviation, conditional on any

instance of z is at least: zi · vi(xi) −
∑

j∈[m] xij · θjkj−r+1(b
j
−i · z−i). The theorem

then follows by taking expectation over z. If zi = 0, it follows trivially, since the

utility is zero.

If zi = 1, observe that a player wins xi if for all j ∈ [m] : θj,kj−xij+1(b
j · z) <

vi(xi). In that case, he gets utility at least: zi ·vi(xi)−
∑

j∈[m] xij ·θj,kj−xij+1(b
j
−i ·z−i).

If a player doesn’t win allocation xi, then it must be that there exists some item

q ∈ [m], such that θq,kq−xiq+1(b
j
−i · z−i) ≥ vi(xi) and such that player i is winning

at most xiq − 1 units of item q. Thus player i’s utility from the deviation in this

case is at least:

−
∑
j∈[m]

xij·θj,kj−xij+1(b
j
−i·z−i) +θj,kq−xiq+1(b

j
−i·z−i) ≥ vi(xi)−

∑
j∈[m]

xij·θj,kj−xij+1(b
j
−i·z−i)

Thus in any case we get that the utility conditional on z is lower bounded by

the desired amount. Since xij ≤ r, the theorem follows.

Lemma 9.2.3. For a fixed market size n, for any valuation profile vn satisfying our

assumptions, there exists deviations b∗,ni (vn) for each player i such that for any bid
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profile bn:

∑
i

U δ,n
i (b∗,ni (vn), bn−i; vi) ≥ OPTδ,n(vn)−

∑
j∈[m]

kj(n) · Ez

[
θjkj(n)−r+1(b

j,n · z)
]

(9.8)

Proof. Since for this lemma, we have fixed a market size n, we will drop it from

any indexing, i.e. kj is the available units of each item j, b is a bid profile, v is a

valuation profile. Since the valuation profile v is fixed, we will denote with x∗
i (z)

the optimal allocation of player i under valuation profile v and arrival profile z.

Consider the following deviation b∗i : random sample an arrival profile z̃−i.

Then b∗i (v) = b′i(x
∗
i (1, z̃−i)) designated by Lemma 9.2.2. By Lemma 9.2.2 for any

bid profile b:

U δ
i (b

∗
i (v), b−i; vi) ≥ Ez,z̃

zi · vi(x∗
i (1, z̃−i))− zi

∑
j∈[m]

x∗
ij(1, z̃−i) · θjkj−r+1(b

j
−i · z−i)


= Ez,z̃

zi · vi(x∗
i (zi, z̃−i))− zi

∑
j∈[m]

x∗
ij(zi, z̃−i) · θjkj−r+1(b

j
−i · z−i)


= Ez,z̃

z̃i · vi(x∗
i (z̃))− z̃i

∑
j∈[m]

x∗
ij(z̃) · θ

j
kj−r+1(b

j
−i · z−i)


≥ Ez,z̃

z̃i · vi(x∗
i (z̃))−

∑
j∈[m]

x∗
ij(z̃) · θ

j
kj−r+1(b

j · z)


Summing over all players:

∑
i

U δ
i (b

∗
i (v), b−i; vi) ≥ Ez,z̃

∑
i

z̃i · vi(x∗
i (z̃))−

∑
j∈[m]

θjkj−r+1(b
j · z)

∑
i

x∗
ij(z̃)


≥ Ez,z̃

∑
i

z̃i · vi(x∗
i (z̃))−

∑
j∈[m]

kj · θjkj−r+1(b
j · z)


= OPTδ(v)−

∑
j∈[m]

kj · Ez

[
θjkj−r+1(b

j · z)
]
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At this point we are ready to use a re-interpretation of the results of Swinkels

[64], whose relevant to our analysis conclusion we present here:

Lemma 9.2.4 (Swinkels [64]). For any sequence of bid profiles bn and for any constant

r, if kj(n) → ∞ then:

lim
n→∞

Ez

[
θjkj(n)−r+1(b

j,n · z))
]
− Ez

[
θjkj(n)+1(b

j,n · z))
]
= 0 (9.9)

Proof of Theorem 9.2.1 : By Lemma 9.2.4 for any sequence of bid profiles bn

and for any ϵ there exists n(ϵ) such that for any n ≥ n(ϵ):

Ez

[
θjkj(n)−r+1(b

j,n · z))
]
≤ Ez

[
θjkj(n)+1(b

j,n · z))
]
+ ϵ

and therefore by Lemma 9.2.3:

∑
i

U δ,n
i (b∗,ni (vn), bn−i; vi) ≥

OPTδ,n(vn)−
∑
j∈[m]

kj(n) · Ez

[
θjkj(n)+1(b

j,n · z)
]
−
∑
j∈[m]

kj(n) · ϵ (9.10)

Since for any player i, vi(·) ≥ ρ, we have that OPTδ,n(vn) ≥ (1 −

δ) ρ
r·m
∑

j∈[m] kj(n), by the existence of the following allocation: order arriving

players arbitrarily at each good and sequentially allocate one unit of the good to

next player in the order (wrapping around if necessary) until the units run out or

all players are satisfied. If player i got xij units of good j, then the welfare of the

allocation is:
∑

i∈[n] zi · vi(x) ≥
∑

i∈[n]
ρ

r·m
∑

j∈[m] zi · xij =
ρ

r·m
∑

j∈[m]

∑
i∈[n] zi · xij .

Observe that
∑

j∈[n] zi · xij = min{r ·
∑

i∈[n] zi, kj(n)}. In expectation over z, this

quantity is at least the minimum of the two expectations. Since, Ez

[∑
i∈[n] zi

]
=

(1− δ) · n and since r · n ≥ kj(n), we have that the allocation achieves welfare at

least: ρ
r·m
∑

j∈[m](1− δ)kj(n).
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Hence, we can transform the additive error in Equation (9.10) into a multi-

plicative:

∑
i

U δ,n
i (b∗,ni (vn), bn−i; vi) +

∑
j∈[m]

kj(n) · Ez

[
θjkj(n)+1(b

j,n · z)
]

≥
(
1− r ·m

ρ(1− δ)
ϵ

)
OPTδ,n(vn)

By observing that:

RMn
δ (bn) =

∑
i

P δ,n
i (bn) =

∑
j∈[m]

Ez

[
θjkj(n)+1(b

n · z) ·
∑
i

xn
i,j(b

j,n, z)

]

=
∑
j∈[m]

Ez

[
kj(n) · θjkj(n)+1(b

j,n · z))
]

where the last inequality follows by the fact that if
∑

i x
n
i,j(b

j,n, z) < kj(n), then

it must be that θjkj(n)+1(b
j,n · z) = 0, and otherwise

∑
i x

n
i,j(b

j,n, z) = kj(n). Com-

bining with the multiplicative error equation we get:

OPTδ,n(vn)∑
i U

δ,n
i (b∗,ni (vn), bn−i; vi) +RMn

δ (bn)
≤ ρ · (1− δ)

ρ · (1− δ)− ϵ · r ·m
(9.11)

For ϵ small enough, the above ratio can be made smaller than any 1 + ϵ′, which

yields the theorem.
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Part III

Applications
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10

SINGLE ITEM AUCTIONS

In this section we analyze the smoothness of single-item auctions. Throughout

the thesis we presented extensive results for first and second price auctions.

Here we analyze two other standard auction formats: the all-pay auction and

the hybrid auction where the winner pays a mixture of his bid and the second

highest bid and give a complete list of our results.

10.1 All-Pay Auction

Simultaneous and sequential all-pay auctions have not been studied in the lit-

erature and could prove useful in capturing simultaneous or sequential all-pay

contests, which is a natural model for several online crowd-sourcing environ-

ments.

Lemma 10.1.1. The all-pay auction is a (1/2, 1)-smooth mechanism via conservative

deviations.

Proof. To see why smoothness holds, note that under any valuation profile v =

(v1, . . . , vn), the highest value player (wlog player 1) can deviate to submitting

a randomized bid b∗
1 drawn drawn uniformly at random from [0, v1], while all

non-highest value players should just deviate to bidding 0. No matter what

the rest of the players are bidding, the utility of the highest bidder from the
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deviation is:

UAPA
1 (b∗

1, b−1; v1) ≥
∫ v1

maxi̸=1 bi

v1f(x)dx− E[b∗
1]

≥ 1

2
v1 −max

i
bi ≥

1

2
v1 −

∑
i

bi =
1

2
OPT(v)−RM(b)

Therefore we get an efficiency guarantee of 1/2 for the simultaneous compo-

sition of m all-pay auctions and an efficiency guarantee of 1/4 for the sequential

composition.

Corollary 10.1.2 (Simultaneous with Budgets). If we run m simultaneous all-pay

auctions and bidders have budgets and fractionally subadditive valuations then the ex-

pected effective welfare at every BAYES-CCE is at least 1/2 of the expected optimal

effective welfare.

Corollary 10.1.3 (Sequential). If we run m sequential all-pay auctions with unit-

demand bidders then BAYES-CE-POA ≤ 4.

In Appendices A.4 and A.5, we present almost matching lower bounds on

the inefficiency of the all-pay auction.

10.2 Hybrid Auction

In the γ-hybrid auction the winner pays his bid with probability γ and the sec-

ond highest bid with probability (1− γ).

Lemma 10.2.1. The γ-hybrid auction is weakly (γ(1− 1
e
)+(1−γ)2, 1, (1−γ)2)-smooth.
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Figure 10.1: Efficiency bound for the hybrid auction.

Proof. Consider a valuation profile v and a bid profile b. Let bmax the highest bid

and vmax the highest value. The non highest value bidders deviation is bidding

0. The highest value bidder’s deviation is bidding as follows: With probability

γ he submits a bid according to distribution with density f(t) = 1
vmax−t

and

support [0, (1− 1
e
)vmax]. With probability (1− γ) he submits his true value.

In the first case the utility of the bidder is at least:

∫ (1− 1
e
)vmax

bmax

(vmax − γt− (1− γ)bmax)f(t)dt ≥∫ (1− 1
e
)vmax

bmax

(vmax − t)f(t)dt =

(
1− 1

e

)
vmax − bmax

In the case when he submits his true value then when bmax < vmax he wins

and gets utility

vmax − γvmax − (1− γ)bmax = (1− γ)(vmax − bmax)

When bmax ≥ vmax he either loses or ties and in any case gets non-negative utility

and thereby utility at least (1− γ)(vmax − bmax).
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Thus overall the expected utility from the deviation is at least:

γ

(
1− 1

e

)
vmax − γbmax + (1− γ)2(vmax − bmax)

The lemma follows by just observing that the payment under bid profile b is at

least γbmax

Corollary 10.2.2 (Simultaneous with Budgets). If we run m simultaneous γ-hybrid

auctions and bidders have budgets and fractionally subadditive valuations then every

BAYES-CCE that satisfies the no-overbidding assumption achieves γ(1− 1
e
)+(1−γ)2

1+(1−γ)2
of the

expected optimal social welfare.

Corollary 10.2.3 (Sequential). If we run m sequential γ-hybrid auctions with unit-

demand bidders then every BAYES-CE that satisfies the no-overbidding assumption

achieves γ(1− 1
e
)+(1−γ)2

2+(1−γ)2
of the expected optimal social welfare.
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11

POSITION AUCTIONS

In this section we consider a generalized version of position auctions introduced

by Abrams et al [2], which allows us to extend analysis of ad auctions to simul-

taneous and sequential composition as well as to the case where players have

budget constraints. It also allows us to capture settings where bidders have

values not only per-click but also per-impression, which is considered an inter-

esting direction from a practical perspective since many companies on the web

strive mainly for impressions rather than clicks. We also propose new simple

mechanisms that are approximately efficient and robust in terms of simultane-

ous and sequential composition and in terms of budget constraints.

11.1 General Monotone Valuations

Consider a setting where the outcome space is an allocation of n positions to n

agents. Each agent has a valuation vij for being allocated position j and such

that the valuations of all the agents are monotone decreasing: if j ≤ j′ then

vij ≥ vij′ . The value vij could be thought of as the value of player i for appearing

at position j. This value could consist of a per-click part and a per-impression

part. For instance, if the bidder thinks that his click-through-rate at position j

is aij and knows that his value per-click is vc
i , while he also has a value vim

ij for

appearing at position j, then his valuation for position j is: vij = aijv
c
i + vim

ij . We

just assume that the above total value is monotone in position.

Observe that in our framework notation the allocation space X consists of
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vectors x = (j1, . . . , jn) such that ji ̸= ji′ for all i ̸= i′. In addition the allocation

space of each player Xi = {1, . . . , n} is totally ordered from his perspective (in

that any outcome where he gets a higher position is greater than any outcome

where he gets a lower one) and the value of a player is monotone with respect

to his own ordering of allocations.

A position mechanism M defines the action space of the players. We will

consider here mechanisms where players submit only a single bid bi (interpreted

differently by the different mechanisms that we consider). Given a bid profile,

the allocation function of a position mechanism is to assign a position ji(b) to

each player i and the payment of each player is some function of the bid profile

Pi(b).

We show that for the class of position-monotone valuations a greedy first

price pay-per-impression mechanism (Mechanism 5) is (1
2
, 1)-smooth and its

second price analog is weakly (1
2
, 0, 1)-smooth. In Appendix A.6 we show that

the standard Generalized Second Price auction that doesn’t take into account

per-impression values has high inefficiency, and therefore our modification is

necessary for constant efficiency guarantees.

MECHANISM 5: Greedy first price pay-per-impression mechanism.

1 Solicit a single bid bi from each player i;
2 Order the players according to bids;
3 Allocate positions to players in the order of the bids (i.e. the highest bidder gets

the first position, etc.);
4 Charge each player his bid bi

Lemma 11.1.1. Mechanism 5 is
(
1
2
, 1
)
-smooth via conservative deviations when valu-

ations are monotone in the position.

Proof. Consider a valuation profile v and any bid profile b and let j∗i be the opti-
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mal position of player i under valuation profile v. Suppose that player i deviates

to bidding according to the uniform distribution U [0, vij∗i ]. For a given bid pro-

file b, let π(j) be the player allocated at position j. If the bid that the player

submits is greater than bπ(j∗i ) then he is allocated position at least as high as j∗i .

By monotonicity of valuations with respect to position we get that his utility

from the deviation is at least:

UM
i (b∗

i , b−i; vi) ≥
∫ vij∗

i

0

(
vij∗i · 1{bπ(j∗

i
)<t} − t

)
f(t)dt

≥
∫ vij∗

i

bπ(j∗
i
)

vij∗i f(t)dt−
∫ vij∗

i

0

tf(t)dt

= vij∗i − bπ(j∗i ) −
vij∗i
2

=
vij∗i
2

− bπ(j∗i )

where f(x) = 1/vij∗i is the density function. Summing over all players we get

the theorem.

The fact that the above mechanism is smooth for any monotone valuation

allows us to invoke Corollary 4.3.13 and get composability results. In addition

the fact that the class of monotone valuations is closed under cappings allows

us to invoke our budget constraint results.

Corollary 11.1.2 (Simultaneous with Budgets). If we run m greedy first price pay-

per-impression mechanisms simultaneously and bidders have monotone fractionally

subadditive valuations and budget constraints then any BAYES-CCE achieves at least

1/2 of the expected optimal effective welfare.

Corollary 11.1.3 (Sequential). If we run m greedy first price pay-per-impression

mechanisms sequentially and bidders have unit-demand valuations then BAYES-CE-

POA ≤ 4.

Note that in the last theorem, unit-demand valuations in our terminology,
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means that a players value for getting several impressions at different position

mechanisms is of the form:

vi(j
1
i , j

2
i , . . . , j

m
i ) = max

k∈[m]
vki (j

k
i ),

where the induced valuations vki (j
k
i ) are monotone in the position jki allocated

at position mechanism Mk.

Threshold-Price Mechanism 5. We also consider the variation of Mecha-

nism 5 studied in Abrams et al. [2], where each player is charged the bid of

the player in the position beneath him. We show that such a mechanism is con-

servatively and weakly
(
1
2
, 0, 1

)
-smooth, implying a bound of 1/4 in isolation,

when composed simultaneously under budget constraints and when composed

sequentially.

In [2] it was shown that in the full information setting there will always exist

a Pure Nash Equilibrium of this mechanism that achieves optimal social wel-

fare, thereby generalizing the result of Edelman et al [21] where only valuations

per-click where considered. However, no price of anarchy analysis exists for

this mechanism and the Bayesian setting or solution concepts that use random-

ization have not been studied.

First, we clarify our no-overbidding assumption for the mechanism of [2].

In this mechanism when a player is allocated position j with a bid bi then his

maximum willingness-to-pay is bi, since in the strategy profile where the player

in position j + 1 bids bi too, he is charged bi. Thus under Definition 6.1.1 of the

implicit bid we have:

Bi(bi, j) = bi

Using a proof identical to that of Lemma 11.1.1 we can show the weak and
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conservative smoothness of this mechanism.

Lemma 11.1.4. The threshold price version of Mechanism 5 where each player is

charged the bid in the position beneath him is weakly
(
1
2
, 0, 1

)
-smooth via conservative

deviations.

Our no-overbidding assumption states that in expectation no player is bid-

ding more than his value for the expected position he gets. A randomized bid

profile b satisfies the no-overbidding assumption if:

Ebi
[bi] ≤ Eb[viji(b)]

If a player participates in many position auctions his strategy is to submit a bid

bki at each position auction Mk. Let bi = (bki )k∈[m] and bk = (bki )i∈[n]. Then the

no-overbidding assumption generalizes to:

Ebi

∑
k∈[m]

bk
i

 ≤ Eb

[
vi(j

1
i (b

1), . . . , jmi (bm))
]

Under this no-overbidding assumption, our framework gives the following re-

sults.

Corollary 11.1.5 (Simultaneous with Budgets). If we run m greedy threshold price

pay-per-impression mechanisms simultaneously and bidders have monotone fraction-

ally subadditive valuations and budget constraints then any BAYES-CCE that satisfies

the no-overbidding assumption, achieves at least 1/4 of the expected optimal effective

welfare.

Corollary 11.1.6 (Sequential). If we run m greedy threshold price pay-per-

impression mechanisms sequentially and bidders have unit-demand valuations then ev-

ery BAYES-CE that satisfies the no-overbidding assumption, achieves at least 1/4 of the

expected optimal welfare.
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11.2 Per-Click Valuations

To draw a stronger connection with existing position auction literature we now

examine the case when bidders have only valuations per-click and not per im-

pression. We will consider two special cases of bidder valuations:

1. vij = aij ṽij : click-through-rates of player i at position j depend on both i

and j in a non-separable way and players have position specific per-click

valuations.

2. vij = aij ṽi: per-click valuations are position independent

While this class of valuations neglects effects captured by the more general

valuation models, special cases of this model are widely used in the literature.

The latter case contains the separable model that has been long studied in the

algorithmic game theory literature and has become the standard [21, 13, 47].

Definition 11.2.1. We say that the click through rates are separable, when aij = αjγi

for all i and j, that is, the click through rate is the product of a factor depending on the

slot and a factor depending on the advertiser.

We use our smoothness framework to strengthen results in the literature. We

give a simple smooth mechanism for the first case, which is equivalent to the

standard form of the Generalized First Price (GFP) auction when specialized to

the case of separable click-through rates aij = αjγi, showing an 1/2 efficiency

bound on GFP and its generalization to the first case above, and an 1/4 efficiency

bound for the corresponding second price analog.

For the second case, we show that the above auction is (1 − 1/e, 1) smooth

when using first price and weakly (1 − 1/e, 0, 1) smooth when using second
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price. This result generalizes the efficiency bound of 1
2
(1 − 1

e
) of Caragiannis et

al [13] that considered only the separable case when aij = αjγi.

Note, however, that this class of valuations is not closed under capping, so

our results do not extend to the case with budgets. The smoothness results

we provide in the remainder of the section do imply efficiency guarantees in

isolation and for special cases of complement-free valuations (e.g. bidders have

value only for the k highest impressions they got and their value per impression

is of the form for which smoothness is proved).

11.2.1 Variable Click Value

First we consider the case when each bidder i has a click-through-rate aij ∈ [0, 1]

when he occupies position j and a value ṽij when he receives a click at position

j. We assume that aij and ṽij are both decreasing in j. In addition, players

submit per click bids and thereby are charged aijbi. Hence, a player’s utility at

bid profile b is:

UM
i (b; vi) = aiji(b)(ṽiji(b) − bi) (11.1)

The utility of a player is quasi-linear with value vij = aij ṽij and payment scheme

Pi(b) = aiji(b)bi.

MECHANISM 6: Greedy first price pay-per-click position mechanism for non-
separable click-through-rates.

1 Solicit a single bid bi from each player i;
2 Allocate position 1 to the bidder i1 = argmaxi ai1bi. Allocate position 2 to bidder
i2 = argmaxi̸=i1 ai2bi, etc.;

3 If player i is allocated to position j charge him aijbi.
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Lemma 11.2.2. Mechanism 6 is
(
1
2
, 1
)
-smooth when click-through-rates and valua-

tions per click are monotone in the position.

Proof. Consider a valuation profile v and a bid profile b and let j∗i be the optimal

position of player i under valuation profile v. Suppose that player i deviates to

bidding according to the uniform distribution U [0, ṽij∗(i)]. Then his utility from

the deviation is:

UM
i (b′

i, b−i; vi) =

∫ ṽij∗
i

0

aiji(t,b−i)(ṽiji(t,b−i) − t)f(t)dt

where f(x) = 1/ṽij∗(i) is the density function. Let π(j∗i ) be the player allocated at

position j∗i under bid profile b. Observe that if aij∗i t ≥ aπ(j∗i )j∗i bπ(j∗i ) then if player

i hasn’t already been allocated a higher position he will definitely win position

j∗i . Thereby, for t in the above range we know that player i will get a position

higher than or equal to j∗i .

Since ṽij is decreasing in j and t ∈ [0, ṽij∗i ] for

t ≥
aπ(j∗i )j∗i
aij∗i

bπ(j∗i ) = τi

we have that ṽiji(t,b−i) − t is positive. By the monotonicity of aij with respect to j

we have:

UM
i (b′

i, b−i; vi) ≥
∫ ṽij∗

i

τi

aij∗i (ṽij∗i − t)f(t)dt−
∫ τi

0

aiji(t,b−i)tf(t)dt

≥
∫ ṽij∗

i

τi

aij∗i (ṽij∗i − t)f(t)dt−
∫ τi

0

aij∗i tf(t)dt

=

∫ ṽij∗
i

τi

aij∗i ṽij∗i f(t)dt−
∫ vij∗

i

0

aij∗i tf(t)dt

= aij∗i ṽij∗i − aij∗i τi −
∫ ṽij∗

i

0

aij∗i tf(t)dt

= aij∗i ṽij∗i − aπ(j∗i )j∗i bπ(j∗i ) − aij∗i
ṽij∗i
2

=
aij∗i ṽij∗i

2
− aπ(j∗i )j∗i bπ(j∗i )
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By summing over all players we get the theorem.

Separable CTRs. Observe that when the click-through-rates are separable,

then Mechanism 6 takes the standard form of the Generalized First Price (GFP)

auction that has been studied in the literature. Specifically, the allocation func-

tion of Mechanism 6 can be concisely described as: weight each players bid

by his quality factor and allocate positions in order of the weighted bid. Each

player is then charged his bid, per-click: aji(b)γibi. Hence, the utility of a player

at some bid profile is:

UM
i (b; vi) = aji(b)(ṽiji(b) − bi) (11.2)

The specialization of Lemma 11.2.2 for separable click-through-rates gives a

1
2

efficiency bound for the Generalized First Price auction even when the per-

click valuations of the players.

Corollary 11.2.3. The Generalized First Price Auction is
(
1
2
, 1
)
-smooth when click-

through-rates are separable and valuations per-click are dependent on the position.

11.2.2 Position Independent Value-per-Click

Better smoothness properties can be derived if the value per-click of a player is

the same for all positions (denoted by ṽi), even when click-through-rates are not

separable.

Lemma 11.2.4. Mechanism 6 is
(
1− 1

e
, 1
)
-smooth when per-click valuations are posi-

tion independent even if click-through-rates are not separable.
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Proof. Suppose that player i deviates to bidding according to distribution with

density function f(t) = 1
ṽi−t

and support [0, (1 − 1
e
)ṽi]. As stated in the proof of

Lemma 11.2.2 if

t ≥
aπ(j∗i )j∗i
aij∗i

bπ(j∗i ) = τi

(where π(j) is the player at position j in the current bid profile) then player i is

assigned a position at least as high as j∗i . Thus his utility from the deviation is:

UM
i (b′

i, b−i; vi) =

∫ (1− 1
e
)ṽi

0

aiji(t,b−i)(ṽi − t)f(t)dt

≥
∫ (1− 1

e
)ṽi

τi

aij∗i (ṽi − t)f(t)dt

=

(
1− 1

e

)
aj∗i ṽi − aπ(j∗i )bπ(j∗i )

By summing over all players we get the theorem.

If the click-through-rates are separable, then this brings us to the standard

model studied in the literature, where the valuation of a player i from being

assigned at position j is: ajγivi and thereby the utility of a player at some bid

profile is:

UM
i (b; vi) = aji(b)γi(ṽi − bi) (11.3)

The specialization of Lemma 11.2.4, gives a better smoothness property for the

Generalized First Price Auction.

Corollary 11.2.5. The GFP auction is
(
1− 1

e
, 1
)
-smooth when per-click valuations are

position independent and click-through-rates are separable.

Threshold Price Mechanism 6. We consider a threshold-price version of

Mechanism 6 where a player is charged, per-click, the minimum bid he had

to make to get his position. To draw a strong connection with existing position
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auction literature we will analyze this mechanism only on the special case where

click-through-rates are separable and valuations are position independent: vij =

ajγiṽi.

Under this valuation model the threshold-price version of Mechanism 6 be-

comes the standard Generalized Second Price (GSP) auction introduced by Edel-

man et al [21] and extensively studied from the price of anarchy perspective

[47, 13]. In this mechanism, under strategy profile b, each player i is charged
γπ(ji(b)+1)bji(b)+1

γi
per-click, where π(j) is the player that got position j under bid

profile b, and thus his utility at some bid profile is:

UM
i (b) = ajγi

(
ṽi −

γπ(ji(b)+1)bji(b)+1

γi

)
(11.4)

In this mechanism a player’s willingness-to-pay for a position j is sim-

ply ajγibi since in the special case where the player beneath him was bidding

γi
γπ(ji(b)+1)

bi, player i is charged an expected total payment of ajγibi. Thus from

Definition 6.1.1 of willingness-to-pay we have that:

Bi(bi, j) = ajγibi

Our no-overbidding assumption will then become:

Eb[aji(b)bi] ≤ Eb[aji(b)ṽi]

Caragiannis et al [13] use a point-wise no-overbidding assumption that for any

bid in the support of a player’s strategy bi ≤ ṽi and prove that such an over-

bidding is weakly dominated. That assumption would imply our weaker in

expectation assumption.

Under the no-overbidding assumption and using the same proof as in

Lemma 11.2.4 specialized for separable click-through-rates would give that the
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Generalized Second Price auction is weakly
(
1− 1

e
, 0, 1

)
-smooth. This implies

the efficiency result of 1
2

(
1− 1

e

)
that was given in Caragiannis et al [13] and the

proof of Lemma 11.2.4 is a generalization of their analysis.

Corollary 11.2.6. The Generalized Second Price auction is weakly
(
1− 1

e
, 0, 1

)
-smooth

when per-click valuations are position independent and click-through-rates are separa-

ble.

In fact applying the same proof of Lemma 11.2.4 we get a generalization of

this result for non-separable click-through-rates.

Corollary 11.2.7. The threshold-price version of Mechanism 6 is weakly
(
1− 1

e
, 0, 1

)
-

smooth when per-click valuations are position independent, even if the click-through-

rates are not separable.

This result implies an efficiency bound of 1
2

(
1− 1

e

)
under the same no-

overbidding assumption that was used by Caragiannis et al [13].
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12

DIRECT MECHANISMS

In this section we will focus on mechanisms where players directly report their

values. These mechanisms show an interesting use of threshold bids (critical

also in truthful mechanism design) in smooth mechanism design. In a direct mech-

anism the player declares a value ṽi(xi) for any allocation outcome xi. Thus the

action space Ai of each player defined by the mechanism is equal to the set of

valuations Vi.

We will focus on direct mechanisms that are also ex-post individually ratio-

nal. We apply the individual rationality constraint to non-truthful mechanisms

in the sense of requiring that if reporting valuations truthfully the resulting util-

ity of any agent is non-negative point-wise over every randomness of the mech-

anism. Note that this doesn’t imply that the player do reports truthfully. It just

places the the restriction on the allocation function X : A → X and the payment

function P : A → Rn
+ of the mechanism that Pi(ṽ) ≤ ṽi(Xi(ṽ)).

12.1 Critical Payments and Smooth Direct Mechanisms

To motivate the connection to truthful mechanism design, we first describe a

single-dimensional service-based mechanism design setting. Consider a setting

where the allocation space is just a feasibility set of players that can be served.

In other words the outcome space from the perspective of each player is binary

Xi = {0, 1} and the outcome space of the mechanism is some feasible subset of

the product space. In addition, suppose that the value of a player was just a
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number vi for being served. The utility of an agent would then be of the form

ui(x, p) = vixi − pi, where xi is either 0 or 1. It is a well known result that an

efficient truthful direct mechanism needs to charge player i, the minimum value

he needs to have to still be allocated: Pi(ṽ) = τi(ṽ−i) = inf{z : Xi(z, ṽ−i) = 1}

and 0 if he is not allocated.

Is there a similar characterization for the more general setting? For more

general settings the standard mechanism that is efficient and guarantees non-

negative prices and individual rationality is the VCG mechanism. Unfortu-

nately, the VCG mechanism doesn’t have a similar simple ”threshold bid” in-

terpretation. Despite this fact, one could still define threshold bids in the more

general quasi-linear setting as follows:

Definition 12.1.1. Given a direct mechanism M and a bid profile ṽ, we say that the

threshold bid τi(xi, ṽ−i) of player i for allocation xi is the minimal value that player i

has to single mindedly declare for allocation xi such that he is allocated xi whenever

ṽi(xi) ≥ τi(xi, ṽ−i).

To make a mechanism truthful in a single parameter setting remember that

one had to strongly tie together the threshold bids of the players with their ac-

tual payments. In what follows we show that even in smooth mechanism de-

sign in order to get approximately efficient smooth mechanisms one needs to

approximately tie threshold bids to the payments.

Definition 12.1.2. A direct mechanism is c-threshold approximate, for some c ≥ 0, if

for any feasible allocation x ∈ X and any reported valuation profile ṽ:

∑
i

τi(xi, ṽ−i) ≤ c
∑
i

Pi(ṽ) (12.1)
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The above relation between threshold bids and payments is in the essence of

the analysis of Lucier and Borodin [46] as described in the next section.

As an example, consider a first price single item auction setting. Consider

a bid profile ṽ and a feasible allocation where player i wins. The threshold

payment for player i to win the auction is exactly equal to the payment that the

winner was paying under bid profile ṽ. The rest of the players are not allocated

hence their threshold payment is 0. Hence, we observe that a single item first

price auction is a 1-threshold approximate mechanism.

First, we show that if a mechanism is c-threshold approximate then this im-

plies a good efficiency guarantee on the Bayes-Nash Equilibria of the game that

it induces.

Theorem 12.1.3. If a direct mechanism is c-threshold approximate and individually

rational then it is
(
β
(
1− e−1/β

)
, βc
)
-smooth via conservative deviations for any β ≥

0.

Proof. Consider an instance of the valuation profile v and a bid profile ṽ. Sup-

pose that bidder i submits a single-minded value θ for his optimal allocation

x∗
i (v). If τi(x∗

i (v), ṽ−i) ≥ θ the agent doesn’t get allocated x∗
i (v). Otherwise he

is allocated and pays Pi(t, ṽi). Since the mechanism satisfies ex post individual

rationality this payment cannot be more than θ. Otherwise a player with true

value t for x∗
i (v) would be getting negative utility.

Thus the utility of a player from this deviation is at least:

UM
i (θ, ṽ−i; vi) ≥ (vi(x

∗
i (v))− θ)1θ>τi(x∗

i (v),ṽ−i)

Now a player by using a randomized Θ that follows a distribution with density

f(θ) = β
vi(x∗

i (v))−θ
for θ ∈ [0, vi(x

∗
i (v))(1 − e−1/β)] he will get expected utility at
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least:

ui(Θ, ṽ−i) ≥
∫ vi(x

∗
i (v))(1−e−1/β)

τi(x∗
i (v),ṽ−i)

(vi(x
∗
i (v))− t)f(θ)dθ

≥ β
(
1− e−1/β

)
vi(x

∗
i (v))− βτi(x

∗
i (v), ṽ−i)

Adding over all players and using the c-threshold payment approximate prop-

erty we get the theorem.

A second price auction on the other hand is not threshold approximate for

any µ. The reason is the following: consider a type profile v and a bid profile ṽ

where a player with a very small value bids a huge number H and the rest of the

players bid truthfully. Then the threshold payment for the highest value player

is H , while the payment that the auction receives is of the order of the values of

the rest of the players. Thus payments and threshold payments are unrelated.

The latter is the crucial difference between first price and second price payment

rules and the reason why we need to employ no-overbidding assumptions to

give efficiency guarantees for second-price payment schemes. Similar to how

c-threshold approximate direct mechanisms are connected to smoothness, the

following property of weak c-threshold approximate mechanisms is connected

to weak smoothness:

Definition 12.1.4. A direct mechanism is weakly (c1, c2)-threshold approximate, for

some c1, c2 ≥ 0, if for any feasible allocation x ∈ X and any reported valuation profile

ṽ: ∑
i

τi(xi, ṽ−i) ≤ c1
∑
i

Pi(ṽ) + c2
∑
i

Bi(ṽi, Xi(ṽ)) (12.2)

Theorem 12.1.5. If a direct mechanism is (c1, c2)-threshold approximate and individ-

ually rational then it is weakly and conservatively

(
β
(
1− e−1/β

)
, βc1, βc2

)
-smooth
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for any β ≥ 0.

The proof is similar to that of Theorem 12.1.3 and is omitted.

12.2 Greedy Direct Combinatorial Auctions

A very interesting instance of c-threshold approximate mechanisms in the litera-

ture is that of Greedy Direct Auctions introduced by Lucier and Borodin [46]. In

the terminology that we introduced in the previous section, Lucier and Borodin

[46] proved that in any direct combinatorial auction setting if the allocation is

decided by a greedy c-approximate mechanism then coupling the mechanism

with a first price payment rule we get a c-threshold approximate mechanism.

These proofs don’t assume anything about the valuation of a player and allow

for complements.

We note that not all greedy algorithms adhere to the framework defined by

Lucier and Borodin [46]. For instance, the greedy matroid mechanisms we stud-

ied in Chapter 8 do not fall into their framework. The greedy mechanisms stud-

ied in [46] are as follows.

1. Solicit valuation reports ṽ.

2. At each iteration pick an (agent, set) pair (i, S) that maximizes a ranking

function r(i, S, ṽi(S)), and allocate S to i.

3. Remove both i and S from consideration and repeat until all items are allo-

cated.

194



The ranking function is monotone in S (by inclusion) and vi(S) and could poten-

tially be adaptive with respect to the existing allocation. For the case of general

combinatorial auctions a
√
k-approximate greedy such algorithm exists, where

k is the number of items.

Hence, for the setting of greedy first price c-approximate combinatorial auc-

tions our framework implies:

Corollary 12.2.1. Any BAYES-CCE of a greedy c-approximate first price combinato-

rial auction achieves at least 1−e−c

c
of the expected optimal social welfare. If bidders have

budgets then it achieves the same fraction of the optimal effective welfare.

Lucier and Borodin [46] give a bound of 1
c+O(log(c))

for the efficiency of such a

greedy auction. More specifically the bound is c−1−log(c)
c(c+1+log(c))

. Our bound is asymp-

totically same, but is strictly better. Our bound decreases as 1
c+O(ce−c)

rather than

1
c+O(log(c))

. When c = 1 the bound coincides with the bound of 1− 1
e

for the first

price single item auction and our bound is always larger than 1
c+ 1

e−1

≈ 1
c+0.58

and

thereby decreases exactly linearly with c.

Our composability framework gives new results for the case when several

greedy combinatorial auctions are run simultaneously or sequentially.

Corollary 12.2.2 (Simultaneous with Budgets). If we run m greedy c-approximate

first price combinatorial auctions simultaneously and bidders have budgets and mono-

tone fractionally subadditive valuations across mechanisms, then any BAYES-CCE

achieves at least 1−e−c

c
of the expected optimal effective welfare.

Corollary 12.2.3 (Sequential). If we run m greedy c-approximate first price combi-

natorial auctions sequentially and bidders have unit-demand valuations across mecha-
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nisms, then any BAYES-CE achieves at least 1−e−c

c+1
of the expected optimal social wel-

fare.

Recall that fractional subadditivity across mechanisms does not impose any

assumption on the valuations within each greedy combinatorial auction. Hence,

the valuations of the bidders could have complements within the items sold in

each greedy auction, as long as they don’t have complements across items sold

in different auctions.

Lucier and Borodin [46] also examine a second-price type of payment

scheme where each agent is charged his threshold bid for the allocation that

he is awarded. In such a mechanism the willingness-to-pay for an allocation

is exactly a player’s bid for that allocation. They show that the mechanism is

weakly (0, c)-threshold approximate. By applying theorem 12.1.5 for β = 1 we

get an efficiency guarantee β(1−e−1/β)
βc+1

= 1−1/e
c+1

for an individual greedy mecha-

nism and for simultaneous and sequential composition. Instead of using the

generic smoothness result of Theorem 12.1.5, by reinterpreting the techniques

of Lucier and Borodin [46] we can easily show that this mechanism is actu-

ally weakly (1, 0, c)-smooth, by considering the deviation where each player

switches to single-mindedly bidding his true valuation on his optimal set 1. This

gives the slightly better efficiency guarantee of 1
c+1

.

1Since the mechanism charges threshold bids, the utility of a player from this deviation is
at least vi(x∗

i (v)) − τi(x
∗
i (v), ṽ−i). Summing over all players and using the fact that the greedy

mechanism is (0, c)-threshold approximate we get the weak (1, 0, c)-smoothness result.
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13

BANDWIDTH ALLOCATION

In this section we consider the single-link version of the bandwidth alloca-

tion setting of Johari and Tsitsiklis [38]. In this setting a bandwidth of C is to be

split among n bidders.

13.1 Kelly’s Proportional Bandwidth Allocation Mechanism

The bidders submit a bid bi which they have to pay no matter how much band-

width they receive. Given the bid profile each player is allocated a bandwidth

proportional to his bid:

MECHANISM 7: Proportional bandwidth allocation mechanism.

1 Solicit a single bid bi from each player i;
2 Allocate to player i bandwidth xi(b) =

biC∑
j∈N bj

;

3 Charge each player his bid bi

Each player has a concave value function vi(xi) for getting a share of band-

width xi, with vi(0) = 0, and his utility is quasi-linear with respect to payments:

UM
i (b; vi) = vi(xi(b))− bi (13.1)

As one can easily observe the latter mechanism falls into our general definition

of a mechanism with quasi-linear preferences. We will show that such a mech-

anism is (2 −
√
3, 1)-smooth. This will imply efficiency guarantees of approxi-

mately 1/4 for any CE and BNE as well as for simultaneous compositions and

sequential composition of bandwidth allocation mechanisms. For the simul-

taneous setting it also implies such a bound even when players have budget
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constraints. Johari and Tsitsiklis [38] give an efficiency bound of 3/4 but their

efficiency guarantee is proved only for the case of pure nash equilibria and only

in the complete information setting. Hence, though our bound is slightly worse,

it is a bound that extends to a plethora of relaxations and extensions.

Lemma 13.1.1. The proportional bandwidth allocation mechanism is (2 −
√
3, 1)-

smooth via conservative deviations when value functions vi : [0, C] → R+ are concave

and v(0) = 0.

Proof. Given a valuation profile v for each player, let x∗
i (v) be the bandwidth

allocated to player i in the optimal allocation. For simplicity we will denote it

with x∗
i for the remainder of the proof since we focus on a specific valuation

profile.

Consider the deviation where player i deviates to bidding uniformly at ran-

dom b∗
i ∼ U [0, λvi(x

∗
i )], for some constant λ that will be determined later on.

Then his expected utility for any bid profile b−i is as follows:

UM
i (b∗

i , b−i; vi) =

∫ λvi(x
∗
i )

0

vi(xi(t, b−i))

λvi(x∗
i )

dt− 1

2
λvi(x

∗
i )

Given the bids of the rest of the players b−i, if player i bids above
x
∑

j ̸=i bj

C−x
then

he is given a bandwidth share of at least x for any x. Thus for all the t ≥ x∗
i

∑
j ̸=i bj

µC−x∗
i

player i is allocated a bandwidth of at least x∗
i /µ.

Thus by monotonicity of vi his utility from the deviation is at least:

UM
i (b∗

i , b−i; vi) ≥
∫ λvi(x

∗
i )

x∗
i

∑
j ̸=i bj

µC−x∗
i

vi(x
∗
i /µ)

λvi(x∗
i )

dt− 1

2
λvi(x

∗
i )

By concavity and the fact that vi(0) = 0 we know that vi
(

x∗
i

µ

)
≥ vi(x

∗
i )

µ
for any
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µ ≥ 1. Thus:

UM
i (b∗

i , b−i; vi) ≥
∫ λvi(x

∗
i )

x∗
i

∑
j ̸=i bj

µC−x∗
i

vi(x
∗
i )

µλvi(x∗
i )
dt− 1

2
λvi(x

∗
i )

=

∫ λvi(x
∗
i )

x∗
i

∑
j ̸=i bj

µC−x∗
i

1

µλ
dt− 1

2
λvi(x

∗
i )

=
1

µ
vi(x

∗
i )−

1

λµ

x∗
i

∑
j ̸=i bj

µC − x∗
i

− 1

2
λvi(x

∗
i )

Since x∗
i ≤ C and

∑
j ̸=i bj ≤

∑
j bj we get:

ui(Bi, b−i) ≥
1

µ
vi(x

∗
i )−

1

λµ

x∗
i

∑
j bj

(µ− 1)C
− 1

2
λvi(x

∗
i )

Summing over all players we get:

∑
i

ui(Bi, b−i) ≥
(
1

µ
− λ

2

)∑
i

vi(x
∗
i )−

∑
i

1

λµ

x∗
i

∑
j bj

(µ− 1)C

=

(
1

µ
− λ

2

)∑
i

vi(x
∗
i )−

1

λµ(µ− 1)

∑
j

bj

By setting λ = 1
µ(µ−1)

we get that the mechanism is ( 1
µ
− λ

2
, 1)-smooth. By opti-

mizing over µ we get that the best bound is implied by µ = 1
2
(3 +

√
3) for which

we get that the mechanism is (2−
√
3, 1)-smooth.

Now observe that the valuation space for which smoothness is proved is the

set of all concave valuations on R+, with v(0) = 0. Clearly, R+ is a distributive

lattice. Submodularity with respect to R+ simply means concavity. By theorem

4.3.16 we know that if several such bandwidth allocation mechanisms happen

simultaneously and the valuation of the player is submodular on the product

lattice, then we can express such a valuation with induced valuations that are

capped marginals:

vj(x
j
i ) = v(xj

i ∧ x̃j
i , x̃

−j
i )− v(0, x̃−j

i )
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Those function are concave with respect to R+ and have v(0) = 0. Therefore we

can apply our simultaneous composition theorem for any submodular valua-

tion with respect to the lattice Rm
+ . If the valuations are continuously differen-

tiable then submodularity on Rm
+ simply means that: ∂2v(xi)

(∂xj
i )

2
≤ 0 and ∂2v(xi)

∂xj
i∂x

j′
i

≤ 0.

Thus the function is concave coordinate-wise and has decreasing differences.

In addition observe that even if we cap a submodular valuation on R+ then it

remains submodular. Thus we can also invoke our budget constraint theorems.

Corollary 13.1.2 (Simultaneous with Budgets). If we run m simultaneous band-

width allocation mechanisms and the valuations are submodular on Rm
+ and bidders

have budgets then any BAYES-CCE achieves at least 1
2−

√
3
≈ 1

3.73
of the expected opti-

mal effective welfare.

For sequential composition we get our theorem for the case where the val-

uation of the bidder is the maximum among his valuations on different links:

vi(xi) = maxj vij(xij).

Corollary 13.1.3 (Sequential). If we rum m sequential bandwidth allocation mecha-

nisms and the valuations are unit-demand then any BAYES-CE achieves at least 1
2(2−

√
3)

of the expected optimal social welfare.
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14

MULTI-UNIT AUCTIONS

Consider the following setting: An auctioneer wants to sell k units of a good.

A bidder’s valuation is an increasing concave function vi(j) of the amount j of

goods he gets. We will consider two types of auctions.

In the first section, we consider auctions where players report their marginal

values for each extra unit of the good. Then the auctioneer allocates units greed-

ily in decreasing order of marginal bids. We analyze both discriminatory pay-

ments rules, where a player pays his marginal bid for each unit allocated and

uniform payment rules, where the price of each allocated unit is the same and

equals the highest un-allocated marginal bid.

In the second section, we consider an auction with a simplified bidding lan-

guage, where the players simply report a per-unit bid bi and a desired quantity

qi. Essentially they declare that the are willing to pay bi for each unit, up to

qi units. The mechanism again allocates units greedily and charges a uniform

payment.

We show that both types of mechanisms are smooth or weakly smooth for

any concave valuation function.

14.1 Marginal Bid Multi-Unit Auctions

We consider the following auction:

We will denote with ki(b) the units allocated to bidder i under bid profile b.
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MECHANISM 8: Greedy First-Price Multi-Unit Auction with concave values.

1 Solicit bids bi1, . . . , bik for marginal values from each player i which are restricted
to be decreasing;

2 At each iteration allocate the extra unit to the bidder that has the maximum
marginal bid for getting it, conditional on the items he has already been allocated;

3 Repeat until all units are allocated or until no player has value for an extra unit;
4 If player i is allocated ki units then charge him

∑ki
j=1 bij .

We will also denote with pj(b) to be the j − th lowest price for which a unit was

sold by the algorithm, i.e. the bid of the j-th from the end unit that was sold.

The utility of a bidder is still quasi-linear with money:

UM
i (b; vi) = vi(ki(b))−

ki(b)∑
j=1

bij (14.1)

We show that the greedy multi-unit auction is (1
2

(
1− 1

e

)
, 1)-smooth thereby

implying an efficiency guarantee of e−1
2e

≈ 1/3.16 when studied in isolation.

Lemma 14.1.1. Mechanism 8 is
(
1
2

(
1− 1

e

)
, 1
)
-smooth via conservative deviations

when bidders’ valuations vi : N → R+ are concave with vi(0) = 0.

Proof. Suppose that bidder i deviates to stating that his k∗
i highest marginal val-

uations are all t for some randomly drawn t according to the distribution with

probability density function f(t) = 1
vi(k

∗
i
)

k∗
i

−t
and support [0, vi(k

∗
i )

k∗i

(
1− 1

e

)
]. For his

remaining marginal valuations he bids 0. Then the utility of player i from this

deviation is:

UM
i (b∗

i , b−i; vi) =

∫ vi(k
∗
i )

k∗
i

(1− 1
e)

0

(vi(ki(t, b−i))− ki(t, b−i)t)f(t)dt

=

∫ vi(k
∗
i )

k∗
i

(1− 1
e)

0

ki(t, b−i)

(
vi(ki(t, b−i))

ki(t, b−i)
− t

)
f(t)dt

Since bidder i bids positive only for his k∗
i highest marginals we know that

he is allocated at most k∗
i units. Hence, ki(t, b−i) ≤ k∗

i for all t. In addition by
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concavity we know that for any k ≤ k∗
i :

v(k)
k

≥ v(k∗i )

k∗i
. Hence:

UM
i (b∗

i , b−i; vi) ≥
∫ vi(k

∗
i )

k∗
i

(1− 1
e)

0

ki(t, b−i)

(
vi(k

∗
i )

k∗
i

− t

)
f(t)dt

=

∫ vi(k
∗
i )

k∗
i

(1− 1
e)

0

ki(t, b−i)dt

For any j ∈ [1, k∗
i ], if t > pj(b) then ki(t, b−i) ≥ j. Hence, we have:

UM
i (b∗

i , b−i; vi) ≥
∫ vi(k

∗
i )

k∗
i

(1− 1
e)

pj(b)

jdt

=
j

k∗
i

(
1− 1

e

)
vi(k

∗
i )− jpj(b) (14.2)

Now we need to find the right pick of j in our analysis, such that when

adding the above inequality for all players then the negative part on the right

hand side will be the total revenue of the auction at bid profile b.

Since prices pj(b) are increasing in j we know that:

jpj(b) ≤
j−1∑
t=0

pj+t(b)

If we choose a j such that 2j − 1 ≤ k∗
i then:

jpj(b) ≤
j−1∑
t=0

pj+t(b) ≤
k∗i∑
t=j

pt(b) ≤
k∗i∑
t=1

pt(b)

Observe that since k∗
i are integers, if we choose j = ⌈k∗i

2
⌉ then we know that

j ≤ k∗i +1

2
and therefore 2j − 1 ≤ k∗

i . Thus if we apply Inequality (14.2) for

j = ⌈k∗i
2
⌉ we get:

UM
i (b∗

i , b−i; vi) ≥
1

2

(
1− 1

e

)
vi(k

∗
i )−

k∗i∑
t=1

pt(b)

Last observe that since
∑

i k
∗
i = k and prices pt(b) are increasing in t:∑

i

∑k∗i
t=1 pt ≤

∑k
t=1 pt(b) =

∑
i Pi(b). Hence, by summing over all players and

using the latter inequality we get the theorem.
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Now similar to the bandwidth allocation setting we can apply our simulta-

neous composability theorem even under budgets when players have submod-

ular valuations on the product lattice on Nm. Submodularity on Nm means that

the functions must be concave coordinate-wise and must satisfy the decreasing

differences.

Corollary 14.1.2 (Simultaneous with Budgets). If we run m greedy multi-unit auc-

tions and bidders have submodular valuations on Nm and budget constrains then every

BAYES-CCE achieves at least e−1
2e

≈ 1
3.16

of the expected optimal effective welfare.

For sequential composition we require that the bidders are unit-demand

over mechanisms: e.g. they have mechanism specific concave value functions

and that their utility is the maximum over all mechanisms of the utility they

get from each mechanism, vi(ki) = maxj vij(kij). Observe that such valuations

are a generalization of the standard notion unit-demand valuations where play-

ers just want one unit. We could simulate unit-demand valuations with unit-

demand over mechanisms by just saying that vij(kij) = v̂ij if kij >= 1. Our

notion of unit-demand valuations over mechanisms just says that you should

pick the mechanism that gave you the maximum value for the units it gave you.

Corollary 14.1.3 (Sequential). If we run m greedy multi-unit auctions sequentially

and bidders have unit-demand valuations over mechanisms then every BAYES-CE

achieves at least e−1
4e

≈ 1
6.32

of the expected optimal social welfare.

One could also think of running a second-price equivalent of Mechanism 8

which is described in Mechanism 9.

Markakis and Telelis [50] studies exactly this auction and uses a no-

overbidding assumption, where the willingness-to-pay of a player is the sum of
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MECHANISM 9: Greedy Multi-Unit Threshold Price Auction with concave val-
ues.

1 Solicit marginal bids bi1, . . . , bik from each player i which are restricted to be
decreasing;

2 At each iteration allocate the extra unit to the bidder that has the maximum
marginal value for getting it conditional on the items he has already been
allocated;

3 For each unit that a player receives charge him the highest marginal bid that the
mechanism didn’t allocate to

his k highest marginal bids if he is allocated k units. Under this no-overbidding

assumption and using similar analysis as in Theorem 14.1.1 we can prove that

this auction is weakly
(
1
2

(
1− 1

e

)
, 0, 1

)
-smooth, thereby implying an efficiency

guarantee of 1
4

(
1− 1

e

)
. This largely improves upon the results of Markakis et

al. [50] where only a logarithmic bound in the number of units O(log(k)) was

proved for the case of mixed and Bayes-Nash equilibria. Our bound also has

implications for budgets and simultaneous and sequential composition.

14.2 Uniform Bid Multi-Unit Auction

Another multi-unit auction that has been widely used in practice is the Uniform

Price Auction. In the uniform price auction every bidder is asked to report a

pair (qi, bi) where qi ∈ N is a quantity and bi is a per-unit bid. The auction then

orders the bids in decreasing order and serves the units until reaching capacity.

Uniform price auctions are frequently used in practice because they have the

advantage that no-matter what the players bid, everyone pays the same price

for the allocated items. Hence, they give a fairness feeling and also avoid any

friction when someone was allocated the same unit at a different price.
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MECHANISM 10: Uniform Price Auction with concave values.

1 Solicit quantity, bid pairs (qi, bi) from each player i;
2 Let Qt be the total units allocated until iteration t;
3 At each iteration t pick unallocated player with highest bi and allocate him
min{qi, k −Qt}, until all units are sold ;

4 Charge everyone the highest losing bid, i.e. the bid of the last player that was
partially satisfied or if the last player was completely satisfied then the bid of
highest player that was unallocated.

In such an auction the willingness-to-pay of a player that received ki units

and bid bi per unit is exactly kibi since in the worst case the highest losing bid

could be just below your bid.

Lemma 14.2.1. The Uniform Price Auction is weakly
(
1
2

(
1− 1

e

)
, 0, 1

)
-smooth via

conservative deviations when bidders valuations vi : N → R+ are concave with vi(0) =

0.

Proof. Consider a strategy profile a = (k, b) and a bid profile v : N → R+.

Suppose that bidder i deviates to bidding a′i = (k∗
i , t) where t is a number

drawn randomly according to the distribution with probability density func-

tion f(t) = β
vi(k

∗
i
)

k∗
i

−t
and support [0, vi(k

∗
i )

k∗i

(
1− 1

e1/β

)
].

Denote by Bt the bid of the t-th last unit sold. Similar to Mechanism 8 it

holds that if t > Bj then the player is allocated at least j units. Thereby using

similar analysis as in the proof of Lemma 14.1.1 we can show that the above

deviation yields utility at least:

UM
i (b∗

i , b−i; vi) ≥
β

2

(
1− 1

e1/β

)
vi(k

∗
i )− β

k∗i∑
t=1

Bt
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Then by summing among all players we can derive:

∑
i

UM
i (b∗

i , b−i; vi) ≥
β

2

(
1− 1

e1/β

)
vi(k

∗
i )− β

∑
i

ki(a)bi

=
β

2

(
1− 1

e1/β

)
vi(k

∗
i )− β

∑
i

Bi(ai, ki(a))

Setting β = 1 we get the theorem.

We also get the same composability guarantees as Mechanism 8:

Corollary 14.2.2 (Simultaneous with Budgets). If we run m uniform price auc-

tions and bidders have submodular valuations on Nm and budget constrains then every

BAYES-CCE that satisfies the no-overbidding assumption achieves at least e−1
4e

≈ 1
6.32

of the expected optimal effective welfare.

Corollary 14.2.3 (Sequential). If we run m uniform price auctions sequentially and

bidders have unit-demand valuations over mechanisms then every BAYES-CE achieves

at least e−1
4e

≈ 1
6.32

of the expected optimal social welfare.
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15

COMBINATORIAL PUBLIC PROJECTS

In this section we consider a first price auction for choosing a set of public

projects and show its smoothness properties under different assumptions on

the valuations of the players over the projects.

We then give an application of a simultaneous public good auction where

the number of participants at each one is small. In most settings the smoothness

of the mechanism implies a price of anarchy that grows with the number of

players or more specifically the maximum number of players interested in any

given project.

15.1 Item Bidding Mechanism for Public Projects

We consider the following formal setting: there are n bidders and m public

projects. The mechanism wants to choose a set S of k projects to implement

and each player i has a value vi : 2
[m] → R+ on the projects. We consider the

following mechanism:

MECHANISM 11: Item-Bidding Mechanism for Combinatorial Public Projects.

1 Solicit bids bij from each player i for each project j;
2 For a project j ∈ [m], let Bj =

∑
i∈[n] bij ;

3 Pick the k projects with the highest Bj and let S(b) be this set of projects;
4 Charge each player his sum of bids for the chosen projects

∑
j∈S(b) bij

We provide three smoothness theorems for the project bidding mechanism,

according to the allowable class of bidder valuations.
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Theorem 15.1.1. For agents with arbitrary monotone valuations the Item-Bidding

Mechanism is
(
1
2
, n · k

)
-smooth.

Proof. Consider a valuation profile v and a bid profile b. Let OPT(v) be the opti-

mal set of projects for valuation profile v. Let p1(b) be the total bid of the highest

valued project under bid profile b. Suppose that agent i switches to b′i in which

he draws a random bid t uniformly at random from [0, vi(OPT(v))
k

] (i.e. with den-

sity f(t) = k
vi(OPT(v))

) and submits this random bid t on all the projects in OPT(v).

If p1(b) < t then the player gets all of the projects in OPT(v) selected and hence

gets a value of vi(OPT(v)). The expected payment that he pays is at most his

expected total bid, which is k vi(OPT(v))
2k

. By the quasi-linearity of utilities and the

linearity of expectation, his expected utility under this deviation is at least:

UM
i (b′i, b−i; vi) ≥

∫ vi(OPT(v))

k

p1(b)

vi(OPT(v))f(t)dt− vi(OPT(v))

2

=

∫ vi(OPT(v))

k

p1(b)

k · dt− vi(OPT(v))

2

=
vi(OPT(v))

2
− k · p1(b)

By summing over all players and using the trivial fact that p1(b) ≤
∑

i Pi(b) we

get the theorem.

Theorem 15.1.2. For agents with fractionally subadditive monotone valuations the

Item-Bidding Mechanism is
(
1
2

(
1− 1

e

)
, n
)
-smooth.

Proof. To simplify the notation in the proof we will assume that k, the number

of chosen projects, is even. Consider a valuation profile v and a bid profile b. Let

OPT(v) be the optimal set of projects for valuation profile v. Let (v∗ij)j∈[m] be the
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representative additive for player i for set OPT(v), i.e.

vi(OPT(v)) =
∑

j∈OPT(v)

v∗ij = max
ℓ∈L

∑
j∈OPT(v)

vℓij

Assume that items are reordered such that projects 1 to k/2 are the ones with the

highest v∗ij in the above representative additive valuation. Hence, by definition,∑k/2
j=1 v

∗
ij ≥ 1

2
vi(OPT(v)).

Suppose that agent i switches to b′i in which for each project j ∈ [1, . . . , k/2]

he draws an independent random number tj with density fj(tj) = 1
v∗ij−tj

and

support [0, v∗ij(1 − e−1)] and submits this random bid tj on project j ∈ OPT(v).

He submits a 0 on any other project. Let X(t) ⊆ [m] be the set of projects that

are chosen for some random draw t = (tj)j∈[m] of the deviating bids of player i.

Hence, a player’s utility from the deviation is:

UM
i (b′i, b−i; vi) = Et

vi(X(t))−
∑

j∈X(t)

tj


Using the fractionally subadditive property of the valuation we know that

vi(X(t)) ≥
∑

j∈X(t) v
∗
ij . Thus:

UM
i (b′i, b−i; vi) ≥ Et

 ∑
j∈X(t)

v∗ij − tj

 =
∑
j∈[m]

Etj

[
(v∗ij − tj) · 1j∈X(t)

]
Now, observe that for all j ∈ [m], tj ≤ v∗ij , by the definition of the deviating bids.

Thus, each term in the above sum is non-negative. Thus:

UM
i (b′i, b−i; vi) ≥

k/2∑
j=1

Etj

[
(v∗ij − tj) · 1j∈X(t)

]
Let pt(b) denote the t-th highest total bid under the initial bid profile b. For any

j ∈ OPT(v), if tj > pk/2+1(b) then project j is definitely selected, since player i is

bidding non-positive on only k/2 projects and we know that the bids of the rest
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of the players exceed pk/2+1 on at most k/2 projects. Thus we can lower bound

each term in the above sum as follows:

UM
i (b′i, b−i; vi) ≥

k/2∑
j=1

Etj

[
(v∗ij − tj) · 1tj>p k

2 +1
(b)

]
≥

k/2∑
j=1

∫ (1−e−1)v

p k
2 +1

(b)

(v∗ij − tj)f(tj)dtj

=

(
1− 1

e

) k/2∑
j=1

v∗ij −
k/2∑
j=1

p k
2
+1(b)

≥
(
1− 1

e

)
1

2
vi(OPT(v))− k

2
p k

2
+1(b)

≥
(
1− 1

e

)
1

2
vi(OPT(v))−

k/2∑
j=1

pt(b)

≥
(
1− 1

e

)
1

2
vi(OPT(v))−

∑
i∈[n]

Pi(b)

Summing over all agents we get the theorem.

Theorem 15.1.3. When bidder valuations are unit-demand then the Item-Bidding

Mechanism is (1− e−1, n
k
)-smooth.

Proof. Consider a valuation profile v and a bid profile b. Let v∗ij be the maximum

valued project of each player: i.e. v∗ij = maxj∈[m] vij . Suppose that each player

switches to the following randomized bid: he draws a random bid t from dis-

tribution with density f(t) = 1
v∗ij−t

and support [0, (1− e−1)v∗ij]. Then he submits

this random bid on project j∗ = argmaxj∈[m] vij and submits a 0 on all other

projects. Let pr(b) be the total bid of the r-th highest valued project under the

initial bid profile b. For any j ∈ OPT(v), if tj > pk(b) then project j is definitely

selected. Thus a bidders utility from the deviation is at least:

UM
i (b′i, b−i; vi) ≥

∫ (1−e−1)v∗ij

pk(b)

(v∗ij − t)f(t)dt = (1− e−1)v∗ij − pk(b)

By summing up over all players and using the facts that
∑

i v
∗
ij ≥

∑
i vi(OPT(v))

and pk(b) ≤ 1
k

∑k
t=1 pt(b) = 1

k

∑
i Pi(b) (by the definition of prices) we get the

theorem.
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15.2 Local Public Good Auctions in Networks

Consider a social network setting where players bid for facilities to be placed on

nodes in a social network. Each node is an agent and when a facility is placed

on a node then all of the neighbors of the node can use it. There exists a set

of facilities Fu that can be placed on each node u (let Fu contain also the empty

facility for the case where no facility is built). Now we assume that auctioneers

run a public good auction on each node to decide which facility they are going

to place. Specifically, he asks from the node and its neighbors to submit a bid

for each possible facility. Then he is going to choose the facility that received the

highest sum of bids and charge each player his bid for the chosen facility.

By Theorem 15.1.3, each mechanism is (1 − e−1, di)-smooth where di is the

degree of the node that is auctioned. Now our framework shows that if we

run simultaneous such auctions and the valuation of a player is a fractionally

subadditve valuation over the facilities placed on his neighboring nodes, then

the overall social welfare of this game will be at least (1− e−1) 1
D

of the optimal,

where D = maxi di, i.e. the price of anarchy is at most D
1−e−1 . Similarly, one

could imagine of a setting where facilities are not placed on nodes of the graph

but rather on edges of it or on hyper-edges in a hyper-graph that tries to model

groups of interested agents. In such settings our framework implies that the

above simultaneous local public good mechanism has price of anarchy at most

k
1−e−1 , where k is the size of the hyper-edge.
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APPENDIX A

COLLECTION OF LOWER BOUNDS

A.1 93% Lower Bound for Bayes-Nash Equilibria of the Asym-

metric the First Price Auction

EXAMPLE A.1.1. (A 93% Lower Bound for the Asymmetric FPA) Player 1 has

value v1 with probability p1 and 0 with probability 1− p1. Player 2 has value v2

with probability p2 and 0 with probability 1 − p2. We assume that when some

player has value 0 he doesn’t even bid. Moreover, we assume that v2 ≥ v1.

We need to determine the equilibrium strategies of player 1 and player 2

when they have positive value. The strategies are going to be mixed. Let

F1(t), F2(t) be the CDFs of the mixed strategies of the two bidders and U1, U2

be their supports. The supports are going to be identical U1 = U2 = [0, b̄] (the

closedness of the upper and lower bounds might vary). The expected utility of

player 1 and player 2 from bidding any t ∈ [0, b̄] is:

u1(t) = (1− p2 + p2F2(t))(v1 − t)

u2(t) = (1− p1 + p1F1(t))(v2 − t)

We assume that the auction can differentiate between a player with positive

value bidding zero and a player with zero value. Moreover, a player with pos-

itive value bidding zero always wins against a zero value player bidding zero.

We will assume that player 1 bids with some positive probability 0, when he

has a positive value, while player 2 doesn’t have an atom at 0 and in fact 0 is

not in the support of player 2’s strategy but simply the lower bound. Since the
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expected utility must be constant across the support we have:

(1− p2 + p2F2(t))(v1 − t) = v1 − b̄ = (1− p2)v1

(1− p1 + p1F1(t))(v2 − t) = v2 − b̄ = v2 − v1 + (1− p2)v1 = v2 − p2v1

Thus b̄ = v1p2. Which then gives:

F1(t) =
v2 − p2v1 − (1− p1)(v2 − t)

p1(v2 − t)
=

p1v2 − p2v1 + (1− p1)t

p1(v2 − t)

F2(t) =
1− p2
p2

t

v1 − t

with, F1(0) = p1v2−p2v1
p1v2

and F2(0) = 0 and F1(b̄) = F2(b̄) = 1. Optimizing over

v1, v2, p1, p2, we get that the expected welfare is approximately .93 of the ex-

pected optimal welfare, when v2 = 1, v1 ≈ 0.57, p2 = 0.75 and p1 → 0.

A.2 Tight e
e−1 Lower Bound for Bayes-Nash of First Price Auc-

tion with Correlated Values

EXAMPLE A.2.1. ( e
e−1

Lower Bound of FPA with correlated values) Consider

the following setting: there are three players. Player one has value deterministi-

cally 1. The value of players two and three is perfectly correlated and identical.

Moreover, their common value v is drawn from a probability distribution with

density function F (t) = 1
e

1
1−t

and support
[
0,
(
1− 1

e

)
v
]
. Thus the distribution

has an atom at 0 with mass 1
e

and has a well defined density f(t) = 1
e

1
(1−t)2

for

any t ∈
(
0, 1− 1

e

]
.

The following is an equilibrium: Player one bids 0 (we assume that the auc-

tion favors player one in case of ties and set his bid to 0), while players two and
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three bid truthfully. This is obviously an equilibrium for the pair of correlated

players.

Player one wins only when the pair of players has zero value, which happens

with probability 1
e
. Moreover, any bid in the region

(
0, 1− 1

e

]
, yields utility:

(1− t)F (t) = 1
e
, while any bid above 1− 1

e
, yields strictly lower utility. Thus it is

an equilibrium for player 1 too.

The optimal social welfare is obviously 1, while the expected welfare at equi-

librium is:

1

e
· 1 +

∫ 1−1/e

0

1

e

t

(1− t)2
dt =

1

e
+ 1− 2

e
= 1− 1

e

A.3 Tight e
e−1 Lower Bound for CCE of First Price Auction

We describe a continuous bidding example where we allow for the auctioneer

to set any tie-breaking rule. We point out that if we discretize the bid space, then

an example even under random tie-breaking that approaches 1 − 1/e can also

be constructed that approximates the one that we describe here.

EXAMPLE A.3.1. (Tight Lower Bound for CCE of FPA in complete information)

Consider a single-item auction among two bidders. Bidder 1 has value v and

bidder 2 has value 0 for the item and this is common knowledge. We assume

that the auctioneer breaks ties in favor of player 1 for any positive bid and in

favor of bidder 2 when a tie occurs at a bid of 0.

We argue that the following is a coarse correlated equilibrium of the game:

222



a random number t is drawn from distribution with cummulative density func-

tion F (t) = v
e

1
v−t

and support
[
0,
(
1− 1

e

)
v
]
. Thus the distribution has an

atom at 0 with mass 1
e

and has a well defined density f(t) = v
e

1
(v−t)2

for any

t ∈
(
0,
(
1− 1

e

)
v
]
. Then both players bid t.

Thus player 1 wins with probability equal to the probability that t is positive,

which is 1− 1
e

and player 2 wins with probability equal to the point mass at 0, i.e.

1/e. Thus the social welfare of this correlated distribution of bids is
(
1− 1

e

)
v,

while obviously the optimal social welfare is v.

The expected utility of player 2 is 0 since whenever t > 0 he loses and when-

ever t = 0 he wins and pays 0. Thus it is trivially a coarse correlated equilibrium

from his perspective.

The expected utility of player 1 can be computed as follows:

Et[u1(t, t)] =

∫ (1− 1
e)v

0

(v − t)f(t)dt =

∫ (1− 1
e)v

0

(v − t)
v

e

1

(v − t)2
dt

=
v

e
· [− log(v − t)]

(1− 1
e)v

0 =
v

e

Last we need to check that the expected utility of player 1 from switch-

ing to any other fixed bid is at most v
e
. We actually show that for any bid

b ∈
(
0,
(
1− 1

e

)
v
]

the expected utility for switching to bidding b all the time

is equal to v
e
:

Et[u1(b, t)] = (v − b) · F (b) = (v − b)
v

e

1

v − b
=

v

e
(A.1)

In addition, it is easy to see that any bid above
(
1− 1

e

)
v yields utility strictly

smaller than v
e
.
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A.4 4/3 Lower bound for Bayes-Nash of All-Pay Auction with

Correlated Values

EXAMPLE A.4.1. (All-pay auction lower bound) Consider a single-item all pay

auction among three players. Player 1 has value 1. Players 2 and 3 have a

common value which is 0 with probability p and 1− p with probability 1− p.

At equilibrium, player 1 bids 0, while players 2 and 3 bid uniformly in (0, 1−

p], when they have value 1− p and bid 0 otherwise (we assume that the auction

favors player 1 in case of ties).

The utility of player 1 is p, while his utility from any bid t ∈ (0, 1 − p] is:

p + (1 − p) t
1−p

− t = p. The utility of players 2 and 3 is 0 for any bid in the

support of their equilibrium strategy, conditional on having positive value.

The optimal welfare is obviously 1. The expected welfare at equilibrium is:

p · 1 + (1− p) · (1− p) (A.2)

which is 3/4, when p = 1/2.

A.5 8/7 Lower bound for mixed Nash of All-Pay Auction

EXAMPLE A.5.1. (Mixed Nash All-pay auction lower bound) Consider a single-

item all pay auction among two players. Player 1 has value 1 while player 2 has

value v.

At equilibrium, player 1 bids uniformly in (0, v], while player 2 submits a

bid with cummulative density function G2(t) = 1 − v + t, i.e. player 2 bids 0
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with probability 1 − v and otherwise bids uniformly between 0 and his value.

The utility of player 1 is 1 − v for any bid in (0, v]. Player 2’s utility is 0 for any

bid in (0, v].

The optimal welfare is obviously 1. The expected welfare at equilibrium is:

1 ·
∫ v

0

(1− v + t) · 1
v
dt+ v ·

∫ v

0

t

v
· 1dt = 1− v

2
+ v · v

2
(A.3)

which is 7/8, when p = 1/2.

A.6 Inefficiency of GSP with per-impression values grows with

slots

Theorem A.6.1. The POA of GSP when bidders also have values per-impression is at

least m (where m is the number of slots).

Proof. Consider the following instance: we have m slots and m bidders that

have a value of vp = 1 per click and no value for the impression. Additionally

there are m bidders that have a value of v = H just for the impression and no

value per click. The slots have click-through-rates: a1 = H and ai = 1 for all

i > 1. We consider the GSP auction where each bidder reports a per-click bid bi

and a bidder at slot s pays: as · bs+1.

We also assume that when bidders are tied, then the impression bidders are

ranked to our favor, i.e. they are ranked first.

Now we argue that the following is an equillibrium: all per-click bidders

bid 1 and all per-impression bidders bid 1−. All players get utility 0. All the

225



per-impression bidders cannot get better utility by deviating. All the per-click

bidders if they bid 1 or higher they get the first slot and pay a1 · vp = H . Thus

their utility is also 0 from this deviation. Thus the latter is an equilibrium.

Under this equilibrium the welfare is H + m − 1. In the optimal all the im-

pression bidders get all the slots and get welfare H ·m. For H = m, the price of

anarchy is O(m).
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